Sequence Impedances and Networks in Power Systems

Demonstrative Video


Sequence Impedance & Sequence Networks


Sequence Circuits for Loads

$$\begin{align*} I_{n} & =I_{a}+I_{b}+I_{c}\\ & =3I_{a0}+\underset{0}{\underbrace{\left(I_{a1}+I_{b1}+I_{c1}\right)}+}\underset{0}{\underbrace{\left(I_{a2}+I_{b2}+I_{c2}\right)}}\\ & =3I_{a0} \end{align*}$$

image

image

Now \[\begin{aligned} V_{a}&=V_{an}+V_{n}\\ &=V_{an}+3Z_{n}I_{a0} \end{aligned}\]

We can therefore write similar expression for the other two phases \[\left[\begin{array}{c} V_{a}\\ V_{b}\\ V_{c} \end{array}\right]=\left[\begin{array}{c} V_{an}\\ V_{bn}\\ V_{cn} \end{array}\right]+\left[\begin{array}{c} V_{n}\\ V_{n}\\ V_{n} \end{array}\right]=Z_{Y}\left[\begin{array}{c} I_{a}\\ I_{b}\\ I_{c} \end{array}\right]+3Z_{n}I_{a0}\left[\begin{array}{c} 1\\ 1\\ 1 \end{array}\right]\] Pre-multiplying both sides of the above equation by the matrix \(C\) \[\begin{aligned} V_{a012} & =Z_{Y}I_{a012}+3Z_{n}I_{a0}C\left[\begin{array}{c} 1\\ 1\\ 1 \end{array}\right]\\ \Rightarrow\left[\begin{array}{c} V_{a0}\\ V_{a1}\\ V_{a2} \end{array}\right] & =Z_{Y}\left[\begin{array}{c} I_{a0}\\ I_{a1}\\ I_{a2} \end{array}\right]+3Z_{n}\left[\begin{array}{c} I_{a0}\\ 0\\ 0 \end{array}\right] \end{aligned}\]

image

image

image \[\left. \begin{array}{cc} V_{ab} & =Z_{\varDelta}I_{ab}\\ V_{bc} & =Z_{\varDelta}I_{bc}\\ V_{ca} & =Z_{\varDelta}I_{ca} \end{array}\right\} V_{ab}+V_{bc}+V_{ca}=Z_{\varDelta}\left(I_{ab}+I_{bc}+I_{ca}\right)\] \[\begin{aligned} V_{ab}+V_{bc}+V_{ca}&=V_{a}-V_{b}+V_{b}-V_{c}+V_{c}-V_{a}=0\\ \Rightarrow V_{ab0} &= I_{ab0} = 0 \end{aligned}\]

image


Sequence Circuits for Synchronous Generator

image The neutral current is given by \[I_{n}=I_{a}+I_{b}+I_{c} \neq 0\]

For phase-a voltage \[\begin{aligned} V_{an} & =-\left(R+j\omega L_{s}\right)I_{a}+j\omega M_{s}\left(I_{b}+I_{c}\right)+E_{an}\\ & =-\left(R+j\omega L_{s}+j\omega M_{s}\right)I_{a}+j\omega M_{s}\left(I_{a}+I_{b}+I_{c}\right)+E_{an} \end{aligned}\]


Similar expressions can also be written for the other two phases. \[ \left[\begin{array}{c} V_{an}\\ V_{bn}\\ V_{cn} \end{array}\right]=-\left[R+j\omega\left(L_{s}+M_{s}\right)\right]\left[\begin{array}{c} I_{a}\\ I_{b}\\ I_{c} \end{array}\right]+j\omega M_{s}\left[\begin{array}{ccc} 1 & 1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1 \end{array}\right]\left[\begin{array}{c} I_{a}\\ I_{b}\\ I_{c} \end{array}\right]+\left[\begin{array}{c} E_{an}\\ E_{bn}\\ E_{cn} \end{array}\right] \]

Pre-multiplying both sides by the transformation matrix \(C\), we get

\[ \left[\begin{array}{c} V_{an0}\\ V_{an1}\\ V_{an2} \end{array}\right]=-\left[R+j\omega\left(L_{s}+M_{s}\right)\right]\left[\begin{array}{c} I_{a0}\\ I_{a1}\\ I_{a2} \end{array}\right]+j\omega M_{s}C\left[\begin{array}{ccc} 1 & 1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1 \end{array}\right]C^{-1}\left[\begin{array}{c} I_{a0}\\ I_{a1}\\ I_{a2} \end{array}\right]+\left[\begin{array}{c} E_{an0}\\ E_{an1}\\ E_{an2} \end{array}\right] \] Synchronous generator is operated to supply only balanced voltages, we can assume \(E_{an0} = E_{an2} = 0 ~and ~ E_{an1} = E_{an}\) . Therefore \[ \left[\begin{array}{c} V_{an0}\\ V_{an1}\\ V_{an2} \end{array}\right]=-\left[R+j\omega\left(L_{s}+M_{s}\right)\right]\left[\begin{array}{c} I_{a0}\\ I_{a1}\\ I_{a2} \end{array}\right]+j\omega M_{s}\left[\begin{array}{ccc} 3 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array}\right]\left[\begin{array}{c} I_{a0}\\ I_{a1}\\ I_{a2} \end{array}\right]+\left[\begin{array}{c} 0\\ E_{an}\\ 0 \end{array}\right] \]

image

image image image


Sequence Circuits for Transmission Line

image

Assuming self impedances of the conductors to be the same, i.e., \[Z_{aa}=Z_{bb}=Z_{cc}\]

Since the transmission line is assumed to be symmetric, we further assume that the mutual inductances between the conductors are the same and so are the mutual inductances between the conductors and the neutral, i.e., \[\begin{aligned} Z_{ab} & =Z_{bc}=Z_{ca}\\ Z_{an} & =Z_{bn}=Z_{cn} \end{aligned}\] Applying Kirchoff’s voltage law we get \[\begin{aligned} V_{an} & =V_{aa'}+V_{a'n'}+V_{n'n}\\ & =V_{aa'}+V_{a'n'}-V_{nn'} \end{aligned}\]

image Again \[\begin{aligned} V_{aa'} & =Z_{aa}I_{a}+Z_{ab}\left(I_{b}+I_{c}\right)+Z_{an}I_{n}\\ V_{nn'} & =Z_{nn}I_{a}+Z_{an}\left(I_{a}+I_{b}+I_{c}\right) \end{aligned}\]

image On Substituting we get \[V_{an}-V_{a^{'}n^{'}}=\left(Z_{aa}-Z_{an}\right)I_{a}+\left(Z_{ab}-Z_{an}\right)\left(I_{b}+I_{c}\right)+\left(Z_{an}-Z_{nn}\right)I_{n}\]

For the other two phases \[\begin{aligned} \left[\begin{array}{c} V_{aa^{'}}\\ V_{bb^{'}}\\ V_{cc^{'}} \end{array}\right] & =\left[\begin{array}{ccc} Z_{s} & Z_{m} & Z_{m}\\ Z_{m} & Z_{s} & Z_{m}\\ Z_{m} & Z_{m} & Z_{s} \end{array}\right]\left[\begin{array}{c} I_{a}\\ I_{b}\\ I_{c} \end{array}\right]\\ \Rightarrow V_{aa^{'}012} & =C\left[\begin{array}{ccc} Z_{s} & Z_{m} & Z_{m}\\ Z_{m} & Z_{s} & Z_{m}\\ Z_{m} & Z_{m} & Z_{s} \end{array}\right]C^{-1}I_{a012}\\ \Rightarrow V_{aa^{'}012} & =\dfrac{1}{3}\left[\begin{array}{ccc} 3Z_{s}+6Z_{m} & 0 & 0\\ 0 & 3Z_{s}-3Z_{m} & 0\\ 0 & 0 & 3Z_{s}-3Z_{m} \end{array}\right]I_{a012}\\ \Rightarrow\left[\begin{array}{c} V_{aa^{'}0}\\ V_{aa^{'}1}\\ V_{aa^{'}2} \end{array}\right] & =\left[\begin{array}{ccc} Z_{s}+2Z_{m}\\ & Z_{s}-Z_{m}\\ & & Z_{s}-Z_{m} \end{array}\right]\left[\begin{array}{c} I_{a0}\\ I_{a1}\\ I_{a2} \end{array}\right] \end{aligned}\]

The sequence equivalent circuits of the transmission line are \[\begin{aligned} Z_{1} & =Z_{2}=Z_{s}-Z_{m}=Z_{aa}-Z_{ab}\\ Z_{0} & =Z_{s}+2Z_{m}=Z_{aa}+2Z_{ab}+3Z_{nn}-6Z_{an} \end{aligned}\]


image

Quick revision of Transformer Connection

image

image image image


Sequence Circuits for Transformers

image The voltage of phase-a of the primary side is \[\begin{aligned} V_{A} & =V_{AN}+V_{N}\\ & =V_{AN}+3Z_{N}I_{A0}\\ V_{A0}+V_{A1}+V_{A2} & =V_{AN0}+V_{AN1}+V_{AN2}+3Z_{N}I_{A0} \end{aligned}\]

  • Direction of \(I_n\) is opposite to that of \(I_N\), we can write an similar equation for the secondary side as

    \[\begin{aligned} V_{a0}+V_{a1}+V_{a2} & =V_{an0}+V_{an1}+V_{an2}-3Z_{n}I_{a0}\\ & =\dfrac{1}{\alpha}\left(V_{AN0}+V_{AN1}+V_{AN2}\right)-3Z_{n}\alpha I_{A0}\\ \alpha\left(V_{a0}+V_{a1}+V_{a2}\right) & =V_{AN0}+V_{AN1}+V_{AN2}-3Z_{n}\alpha^{2}I_{A0}\\ & =V_{A0}+V_{A1}+V_{A2}-3\left(Z_{N}+Z_{n}\alpha^{2}\right)I_{A0} \end{aligned}\]


    \[\begin{aligned} \alpha & =\dfrac{N_{1}}{N_{2}} =\dfrac{V_{AN}}{V_{an}}\\ \Rightarrow V_{an}&=\dfrac{V_{AN}}{\alpha}\\ N_{1}I_{A} & =N_{2}I_{a}\Rightarrow I_{a}=\alpha I_{A} \end{aligned}\]

  • Separating out the positive, negative and zero sequence components \[\begin{aligned} \alpha V_{a1} & =\dfrac{N_{1}}{N_{2}}V_{a1}=V_{A1}\\ \alpha V_{a2} & =\dfrac{N_{1}}{N_{2}}V_{a2}=V_{A2}\\ \alpha V_{a0} & =\dfrac{N_{1}}{N_{2}}V_{a0}=V_{A0}-3\left[Z_{N}+\left(N_{1}/N_{2}\right)^{2}Z_{n}\right]I_{A0} \end{aligned}\]

  • the positive and negative sequence impedances are the same as the transformer leakage impedance \(Z\)

  • The total zero sequence impedance is given by \[Z_{0}=Z+3Z_{N}+3\left(N_{1}/N_{2}\right)^{2}Z_{n}\]

image If both the neutrals are solidly grounded, i.e., \(Z_n = Z_ N = 0\), then \(Z_0\) is equal to \(Z\) image

image \[\begin{aligned} V_{AB} & =V_{A}-V_{B}\\ & =\left(V_{A0}+V_{A1}+V_{A2}\right)-\left(V_{B0}+V_{B1}+V_{B2}\right)\\ & =V_{AB1}+V_{AB2} \end{aligned}\] Again \[V_{AB}=\dfrac{N_{1}}{N_{2}}V_{ab}=\alpha V_{ab}\] Therefore \[V_{AB}=V_{AB1}+V_{AB2}=\alpha\left(V_{ab1}+V_{ab2}\right)\]

  • The sequence components of the line-to-line voltage \(V_{AB}\) can be written in terms of the sequence components of the line-to-neutral voltage as \[\begin{aligned} V_{AB1} & =\sqrt{3}V_{AN1}\angle30^{0}\\ V_{AB2} & =\sqrt{3}V_{AN2}\angle-30^{0} \end{aligned}\]

  • Therefore combining we get \[\begin{aligned} \sqrt{3}V_{AN1}\angle30^{0}+\sqrt{3}V_{AN2}\angle-30^{0}&=\\ \alpha\left(\sqrt{3}V_{an1}\angle30^{0}+\sqrt{3}V_{an2}\angle-30^{0}\right)& \end{aligned}\]

  • Hence we get \[V_{AN1}=\alpha V_{an1}~\quad~V_{AN2}=\alpha V_{an2}\]

  • Thus the positive and negative sequence equivalent circuits are represented by a series impedance that is equal to the leakage impedance of the transformer.

  • Since the \(\varDelta\)-connected winding does not provide any path for the zero sequence current to flow we have \[I_{A0}=I_{a0}=0\]

  • However the zero sequence current can sometimes circulate within the \(\varDelta\) windings. image

image

  • Even though \(I_0\) in the primary Y-connected side has a path to the ground, the \(I_0\) flowing in the \(\varDelta\)-connected secondary winding has no path to flow in the line.

  • Hence we have \(I_{a0} = 0\).

  • However the circulating \(I_0\) in the \(\varDelta\) winding magnetically balances the \(I_0\) of the primary winding.

  • The voltage in phase-a of both sides of the transformer \[V_{AN}=\dfrac{N_{1}}{N_{2}}V_{ab}=\alpha V_{ab}\]

  • Also \[\begin{aligned} V_{A} & =V_{AN}+V_{N}\\ \left(V_{A0}+V_{A1}+V_{A2}\right) & =\left(V_{AN0}+V_{AN1}+V_{AN2}\right)+3Z_{N}I_{A0}\\ & =\alpha\left(V_{ab0}+V_{ab1}+V_{ab2}\right)+3Z_{N}I_{A0} \end{aligned}\]

  • Separating zero, positive and negative sequence components \[\begin{aligned} V_{A0} & =\alpha V_{ab0}+3Z_{N}I_{A0}\\ V_{A1} & =\alpha V_{ab1}=\sqrt{3}\alpha V_{a1}\angle30^{0}\\ V_{A2} & =\alpha V_{ab2}=\sqrt{3}\alpha V_{a2}\angle-30^{0} \end{aligned}\]

  • The zero sequence is \(Z_0 = Z + 3Z_N\).

  • Note that the primary and the secondary sides are not connected and hence there is an open circuit between them.

  • However since the zero sequence current flows through primary windings, a return path is provided through the ground.

  • If however, the neutral in the primary side is not grounded, i.e., \(Z_N = \infty\), then the zero sequence current cannot flow in the primary side as well.

  • The sequence diagram is then shown as \(Z_0 = Z\).

image


Zero sequence networks for different T/F Configuration

image

image

Sequence Networks

  • positive, negative & zero sequence networks are formed separately by combining the sequence circuits of all the individual elements.

  • Assumptions made while forming sequence networks are:

  1. Apart from syn. M/C, network is made of static elements.

  2. \(\mathrm{V_{drop}}\) caused by the current in a particular sequence depends only on the impedance of that part of the network.

  3. Positive & negative sequence impedances are equal for all static circuit components, while zero sequence component need not be the same

  4. Sub-transient positive & negative sequence impedances of a synchronous M/C are equal.

  5. Voltage sources are connected to the positive sequence circuits of the rotating machines.

  6. No \(I_1\) or \(I_2\) flows between neutral and ground.


Sequence Network of a Power System

image

image

image