Power in Three-Phase Circuits

Demonstrative Video


Lecture-3: Overview


\(3-\phi\) Circuits

\(1-\phi\) System

image
image

\(3-\phi\) System

image


Why \(3-\phi\) is Preferred Over \(1-\phi\)?

Advantages of \(3-\phi\) over \(1-\phi\) system:


Phase Sequence, Line and Phase Quantities


Line/Phase and Load in \(3-\phi\) System

image
image

STAR (Y): Current & Voltage Relations

image \[ \begin{aligned} &\mathrm{E}_{\mathrm{NR}}=\mathrm{E}_{\mathrm{NY}}=\mathrm{E}_{\mathrm{NB}}=\mathrm{E}_{\mathrm{ph}}(\text{ in mag.})\\ &\overline{\mathrm{E}_{\mathrm{NR}}}+\overline{\mathrm{E}_{\mathrm{RY}}}-\overline{\mathrm{E}_{\mathrm{NY}}}=0\\ \Rightarrow&\overline{\mathrm{E}_{\mathrm{RY}}}=\overline{\mathrm{E}_{\mathrm{NY}}}-\overline{\mathrm{E}_{\mathrm{NR}}}(\text { vector diff.}) \\ \mathrm{E}_{\mathrm{RY}}& =\sqrt{\mathrm{E}_{\mathrm{NY}}^{2}+\mathrm{E}_{\mathrm{NR}}^{2}+2 \mathrm{E}_{\mathrm{NY}} \mathrm{E}_{\mathrm{NR}} \cos 60^{\circ}}\\ \Rightarrow & E_{L}=\sqrt{E_{p h}^{2}+E_{p h}^{2}+2 E_{p h} E_{p h} \times 0.5 }\\ \Rightarrow&\mathrm{E}_{\mathrm{L}}=\sqrt{3 \mathrm{E}_{\mathrm{ph}}^{2}}=\sqrt{3} \mathrm{E}_{\mathrm{ph}} \text { (in mag.) } \\ &\mathrm{I}_{\mathrm{NR}}=\mathrm{I}_{\mathrm{NY}}=\mathrm{I}_{\mathrm{NB}}=\mathrm{I}_{\mathrm{ph}} \\ &\mathrm{I}_{\mathrm{R}}=\mathrm{I}_{\mathrm{Y}}=\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{L}} \end{aligned} \]


Delta(\(\Delta\)): Current & Voltage Relations

image \[ \begin{aligned} &\mathrm{E}_{12}=\mathrm{E}_{\mathrm{RY}};~\mathrm{E}_{23}=\mathrm{E}_{\mathrm{YB}};~ \mathrm{E}_{31}=\mathrm{E}_{\mathrm{BR}} \\ &\mathrm{E}_{12}=\mathrm{E}_{23}=\mathrm{E}_{31}=\mathrm{E}_{\mathrm{ph}} \\ &\mathrm{E}_{\mathrm{RY}}=\mathrm{E}_{\mathrm{YB}}=\mathrm{E}_{\mathrm{BR}}=\mathrm{E}_{\mathrm{L}} \\ &\mathrm{I}_{12}=\mathrm{I}_{23}=\mathrm{I}_{31}=\mathrm{I}_{\mathrm{ph}} \\ & \overline{\mathrm{I}_{31}}=\overline{\mathrm{I}_{\mathrm{R}}}+\overrightarrow{\mathrm{I}_{12}} \Rightarrow \overline{\mathrm{I}_{\mathrm{R}}}=\overline{\mathrm{I}_{31}}-\overline{\mathrm{I}_{12}} \\ & \mathrm{I}_{\mathrm{R}}=\sqrt{\mathrm{I}_{31}^{2}+\mathrm{I}_{12}^{2}+2 \mathrm{I}_{31} \mathrm{I}_{12} \cos 60^{\circ}} \\ & \mathrm{I}_{\mathrm{L}}=\sqrt{\mathrm{I}_{\mathrm{ph}}^{2}+\mathrm{I}_{\mathrm{ph}}^{2}+2 \mathrm{I}_{\mathrm{ph}} \mathrm{I}_{\mathrm{ph}} \times 0.5} \\ & \mathrm{I}_{\mathrm{L}}=\sqrt{3 \mathrm{I}_{\mathrm{ph}}^{2}}=\sqrt{3} \mathrm{I}_{\mathrm{ph}} \end{aligned} \]


\(Y \leftrightarrow \Delta\) Transformation

image

\[\begin{aligned} R_{a b} &=\frac{R_{a} R_{b}+R_{a} R_{c}+R_{b} R_{c}}{R_{c}} \\ R_{a c} &=\frac{R_{a} R_{b}+R_{a} R_{c}+R_{b} R_{c}}{R_{b}} \\ R_{b c} &=\frac{R_{a} R_{b}+R_{a} R_{c}+R_{b} R_{c}}{R_{a}} \end{aligned}\] \[\begin{aligned} R_{a}& =\frac{R_{a b} R_{a c}}{R_{a b}+R_{a c}+R_{b c}} \\ R_{b}& =\frac{R_{a b} R_{b c}}{R_{a b}+R_{a c}+R_{b c}} \\ R_{c}& =\frac{R_{a c} R_{b c}}{R_{a b}+R_{a c}+R_{b c}} \end{aligned}\]


Power in 1-\(\phi\) and 3-\(\phi\) Circuits

  • 1-\(\phi\) power equation \[\mathrm{P}=\mathrm{VI} \cos \varphi\]

  • 3-\(\phi\) power equation \[\mathrm{P_{3\phi}}=3\mathrm{V_{ph}}\mathrm{I_{ph}} \cos \varphi\]

  • \(3-\phi\) Y-power \[\begin{aligned} &P=3 \frac{V_{L}}{\sqrt{3}} I_{L} \operatorname{Cos} \varphi \\ \Rightarrow & \mathrm{P}=\sqrt{3} \mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \operatorname{Cos} \varphi \end{aligned}\]

  • \(3-\phi\) \(\Delta\) - power \[\begin{aligned} &\mathrm{P}=3 \mathrm{V}_{\mathrm{L}} \frac{\mathrm{I}_{\mathrm{L}}}{\sqrt{3}} \operatorname{Cos} \varphi\\ \Rightarrow & \sqrt{3} \mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \phi \end{aligned}\]

  • Apparent Power \[\mathrm{P}_{\mathrm{a}}=\sqrt{3} \mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}}\]

  • Reactive Power \[P_{r}=\sqrt{3} V_{L} I_{L} \sin \varphi\]