Power-Angle Relationship of a Synchronous Machine

Demonstrative Video


Power-Angle Relationship

  • Consider the relation for a lumped parameter lossless transmission line

  • For a single-machine-infinite-bus (SMIB) system, the reactance \(X\) includes the reactance of the transmission line and the synchronous reactance or the transient reactance of the generator.

    image

  • The sending end voltage is then the internal emf of the generator

  • Let the sending and receiving end voltage be given by

    \[V_{s}=V_{1}\angle\delta,~~V_{r}=V_{2}\angle0^{0}\]
  • \[I_{s}=\dfrac{V_{1}\angle\delta-V_{2}}{jX}=\dfrac{V_{1}cos\left(\delta\right)-V_{2}+jV_{1}sin\left(\delta\right)}{jX}\]
    We then have,
  • \[\begin{aligned} P_{s}+jQ_{s} & =V_{s}I_{s}^{*}\\ &=V_{1}\left(cos~\delta+jsin~\delta\right)\dfrac{V_{1}cos~\delta-V_{2}-jV_{1}sin~\delta}{-jX}\\ & =\dfrac{V_{1}V_{2}sin~\delta+j\left(V_{1}^{2}-V_{1}V_{2}cos~\delta\right)}{X} \end{aligned}\]
    The sending end real power and reactive power:
  • Since the line is loss less, \(P_s = P_r\)

  • \[\begin{aligned} P_{e}&=P_{s}=P_{r}\\ &=\dfrac{V_{1}V_{2}}{X}sin~\delta\\ &=P_{max}sin~\delta \end{aligned}\]
    We can therefore write
  • \[P_{max} = V_1V_2/X\]
    where maximum power that can be transmitted over TL

image
image

  • For a given power \(P_0\), there are two possible values of the angle \(\delta - \delta_0\) and \(\delta_{max}\).

  • \[\begin{aligned} \delta_{0} & =sin^{-1}\left(\dfrac{P_{0}}{P_{max}}\right)\\ \delta_{max} & =180^{0}-\delta_{0} \end{aligned}\]
    The angles are given by