Per-Unit Quantities and Systems in Power Systems

Demonstrative Video


Per Unit Quantities & System


Advantages of P.U. System

  1. Network analysis becomes simpler as all impedances can be directly added together regardless of the system voltages

  2. It eliminates factors 3 or \(\sqrt{3}\) multiplication and divisions required on converting \(3-\phi\) to \(1-\phi\) associated with Y/\(\varDelta\) quantities as they are directly taken into account by base quantities

  3. Usually, the impedance of an electrical apparatus is given in % or p.u values by the manufacturer on the nameplate rating

  4. Differences in operating characteristics of many electrical apparatus can be estimated by a comparison of their constants expressed in pu

  5. P.U. impedances of machines of the same type or widely different ratings usually lie within a narrow range, although the ohmic values differ widely for M/Cs of different ratings

  6. P.U. quantities are more convenient in calculations involving digital computers


P.U of Single-Phase System

Let, \[\begin{aligned} I_{B} & = \text{Base current in A} \\ V_{B} &= \text{Selected base voltage in V} \\ S_{B} & = \text{Selected VA} \end{aligned}\]

\[\begin{aligned} \Rightarrow I_{B} & =\dfrac{S_{B}}{V_{B}}\\ \Rightarrow Z_{B} & =\dfrac{V_{B}}{I_{B}} =\dfrac{V_{B}}{S_{B}/V_{B}} =\dfrac{\left(V_{B}\right)^{2}}{S_{B}} \end{aligned}\]

$$\boxed{Z_B=\frac{\left(k V_B\right)^2}{\mathrm{M V A_B}}}$$

\(\Rightarrow\) Base quantity is always real number
\(\Rightarrow\) Physical quantity can be complex number

\[\begin{aligned} & \Rightarrow S_{B}=\left(VA\right)_{B}=P_{B}=Q_{B}=V_{B}I_{B}\\ & \Rightarrow Z_{B}=X_{B}=R_{B}\\ & \Rightarrow Y_{B}=B_{B}=G_{B}=\dfrac{I_{B}}{V_{B}}\\ \Rightarrow Z_{pu} & =\dfrac{Z_{actual}}{Z_{B}}=\dfrac{Z_{actual}}{\left(kV_{B}\right)^{2}/MVA_{B}}=\dfrac{Z_{actual}MVA_{B}}{\left(kV_{B}\right)^{2}}\\ \Rightarrow & I_{pu}=\dfrac{I_{actual}}{I_{B}}\\ \Rightarrow &V_{pu}=\dfrac{V_{actual}}{V_{B}}\\ \Rightarrow & \left(VA\right)_{pu}=\dfrac{\left(VA\right)_{actual}}{\left(VA\right)_{B}} \end{aligned}\]

\[\begin{aligned} & \Rightarrow Z_{pu}=\dfrac{Z\angle\theta}{Z_{B}}=Z_{pu}\angle\theta=R_{pu}+jX_{pu}\\ & \Rightarrow R_{pu}=\dfrac{R_{actual}}{Z_{B}}~\mbox{and }~ X_{pu}=\dfrac{X_{actual}}{Z_{B}} \\ & \Rightarrow S_{pu}=P_{pu}+jQ_{pu}\\ & \Rightarrow P_{pu}=\dfrac{P_{actual}}{S_{B}} ~ \mbox{and } ~ Q_{pu}=\dfrac{Q_{actual}}{S_{B}} \end{aligned}\] \[\begin{aligned} \Rightarrow\dfrac{S\angle\theta}{S_{B}} & =\dfrac{VI^{*}}{S_{B}}=\dfrac{\left(V\angle\theta_{v}\right)\left(I\angle-\theta_{I}\right)}{V_{B}I_{B}}~~~ \Rightarrow S_{pu} =V_{pu}I_{pu}^{*} \end{aligned}\]


Converting per-unit values to physical values

\[\begin{aligned} \Rightarrow I & =I_{pu}\times I_{B}\\ \Rightarrow V & =V_{pu}\times V_{B} \end{aligned}\] \[\begin{aligned} \Rightarrow Z&=Z_{pu}\times Z_{B}\\ \Rightarrow R&=R_{pu}\times Z_{B}\\ \Rightarrow X&=X_{pu}\times Z_{B} \end{aligned}\] \[\begin{aligned} \Rightarrow S&=S_{pu}\times S_{B}\\ \Rightarrow P&=P_{pu}\times S_{B}\\ \Rightarrow Q&=Q_{pu}\times S_{B} \end{aligned}\]

image


Change of base


P.U of Three-Phase System

\(3-\Phi\) system involving balanced system can be solved on \(1-\Phi\) basis \[\begin{aligned} & I_{B}=\dfrac{S_{B\left(1\Phi\right)}}{V_{B\left(L-N\right)}} = \dfrac{S_{B\left(3\Phi\right)}}{\sqrt{3}V_{B\left(L-L\right)}} \\ & Z_{B}=\dfrac{V_{B\left(L-N\right)}}{I_{B}}=\dfrac{\left[kV_{B\left(L-N\right)}\right]^{2}}{MVA_{B\left(1\Phi\right)}} =\dfrac{\left[kV_{B\left(L-L\right)}\right]^{2}}{MVA_{B\left(3\Phi\right)}} \end{aligned}\] Note: for balanced system \[\begin{aligned} & V_{B\left(L-N\right)}=\dfrac{V_{B\left(L-L\right)}}{\sqrt{3}} \\ & S_{B\left(1\Phi\right)}=\dfrac{S_{B\left(3\Phi\right)}}{3} \end{aligned}\]


Per-Unit Representation of a Transformer

image

Since, \[\begin{aligned} \dfrac{I_{1}}{I_{2}} & =\dfrac{I_{1B}}{I_{2B}}=a\\ \Longrightarrow\dfrac{I_{1}}{I_{1B}} & =\dfrac{I_{2}}{I_{2B}}\\ \Longrightarrow I_{1\left(pu\right)} & =I_{2\left(pu\right)}=I_{\left(pu\right)} \end{aligned}\]

Therefore, \[\begin{aligned} V_{2\left(pu\right)} & =V_{1\left(pu\right)}-I_{\left(pu\right)}\left(Z_{p\left(pu\right)}+Z_{s\left(pu\right)}\right)\\ & =V_{1\left(pu\right)}-I_{\left(pu\right)}Z_{\left(pu\right)} \end{aligned}\]

\(\Longrightarrow\) represents a simple equivalent circuit without ideal transformer.