Per-Unit Quantities and Systems in Power Systems

Demonstrative Video


Per Unit Quantities & System

  • In PSA calculation of impedances, currents, voltages, and powers are done in p.u values (scaled or normalized) rather than using the physical values of \(\Omega\), A, KV, and KVA

  • \[\mbox{Quantity in p.u} = \dfrac{\mbox{physical value of quantity}}{\mbox{base value of quantity}}\]
    Per-unit value of any quantity can be defined as
  • Dimensional quantity


Advantages of P.U. System

  1. Network analysis becomes simpler as all impedances can be directly added together regardless of the system voltages

  2. It eliminates factors 3 or \(\sqrt{3}\) multiplication and divisions required on converting \(3-\phi\) to \(1-\phi\) associated with Y/\(\varDelta\) quantities as they are directly taken into account by base quantities

  3. Usually, the impedance of an electrical apparatus is given in % or p.u values by the manufacturer on the nameplate rating

  4. Differences in operating characteristics of many electrical apparatus can be estimated by a comparison of their constants expressed in pu

  5. P.U. impedances of machines of the same type or widely different ratings usually lie within a narrow range, although the ohmic values differ widely for M/Cs of different ratings

  6. P.U. quantities are more convenient in calculations involving digital computers


P.U of Single-Phase System

  • Any two of the four base quantities (i.e. base voltage, base current, bases VA, and base impedance) are arbitrarily specified, the other two can be determined

  • Base voltage is selected such that system voltage is normally close to unity

  • Base VA is usually selected as the KVA or MVA rating of one of the machine or transformer in the system, or a convenient round number such as 1, 10, 100, or 1000 MVA depending on the system size

\[\begin{aligned} I_{B} & = \text{Base current in A} \\ V_{B} &= \text{Selected base voltage in V} \\ S_{B} & = \text{Selected VA} \end{aligned}\]
Let,
\[\begin{aligned} \Rightarrow I_{B} & =\dfrac{S_{B}}{V_{B}}\\ \Rightarrow Z_{B} & =\dfrac{V_{B}}{I_{B}} =\dfrac{V_{B}}{S_{B}/V_{B}} =\dfrac{\left(V_{B}\right)^{2}}{S_{B}} \end{aligned}\]
$$\boxed{Z_B=\frac{\left(k V_B\right)^2}{\mathrm{M V A_B}}}$$

\(\Rightarrow\) Base quantity is always real number
\(\Rightarrow\) Physical quantity can be complex number

\[\begin{aligned} & \Rightarrow S_{B}=\left(VA\right)_{B}=P_{B}=Q_{B}=V_{B}I_{B}\\ & \Rightarrow Z_{B}=X_{B}=R_{B}\\ & \Rightarrow Y_{B}=B_{B}=G_{B}=\dfrac{I_{B}}{V_{B}}\\ \Rightarrow Z_{pu} & =\dfrac{Z_{actual}}{Z_{B}}=\dfrac{Z_{actual}}{\left(kV_{B}\right)^{2}/MVA_{B}}=\dfrac{Z_{actual}MVA_{B}}{\left(kV_{B}\right)^{2}}\\ \Rightarrow & I_{pu}=\dfrac{I_{actual}}{I_{B}}\\ \Rightarrow &V_{pu}=\dfrac{V_{actual}}{V_{B}}\\ \Rightarrow & \left(VA\right)_{pu}=\dfrac{\left(VA\right)_{actual}}{\left(VA\right)_{B}} \end{aligned}\]
\[\begin{aligned} & \Rightarrow Z_{pu}=\dfrac{Z\angle\theta}{Z_{B}}=Z_{pu}\angle\theta=R_{pu}+jX_{pu}\\ & \Rightarrow R_{pu}=\dfrac{R_{actual}}{Z_{B}}~\mbox{and }~ X_{pu}=\dfrac{X_{actual}}{Z_{B}} \\ & \Rightarrow S_{pu}=P_{pu}+jQ_{pu}\\ & \Rightarrow P_{pu}=\dfrac{P_{actual}}{S_{B}} ~ \mbox{and } ~ Q_{pu}=\dfrac{Q_{actual}}{S_{B}} \end{aligned}\]

Converting per-unit values to physical values

\[\begin{aligned} \Rightarrow I & =I_{pu}\times I_{B}\\ \Rightarrow V & =V_{pu}\times V_{B} \end{aligned}\]
image

Change of base

  • In general, the pu impedance of a given apparatus is given on the base of its own VA and voltage ratings, and consequently on the basis of its own impedance base

  • When such an apparatus is used in a system that has its own base, it becomes necessary to refer all the given base values to the system base values

  • Assuming the pu impedance of the apparatus is given on the basis of its nameplate ratings as

    \[Z_{pu\left(given\right)}=Z_{actual}\dfrac{MVA_{B\left(given\right)}}{\left[kV_{B\left(given\right)}\right]^{2}}\]
  • For the new set of voltage and VA bases

    \[Z_{pu\left(new\right)}=Z_{actual}\dfrac{MVA_{B\left(new\right)}}{\left[kV_{B\left(new\right)}\right]^{2}}\]
  • On dividing

    $$\boxed{ Z_{p u(\text { new })}=Z_{p u(\text { given })}\left[\frac{M V A_{B(\text { new })}}{M V A_{B(\text { given })}}\right]\left[\frac{k V_{B(\text { given })}}{k V_{B(\text { new })}}\right]^2 }$$

P.U of Three-Phase System

\[\begin{aligned} & I_{B}=\dfrac{S_{B\left(1\Phi\right)}}{V_{B\left(L-N\right)}} = \dfrac{S_{B\left(3\Phi\right)}}{\sqrt{3}V_{B\left(L-L\right)}} \\ & Z_{B}=\dfrac{V_{B\left(L-N\right)}}{I_{B}}=\dfrac{\left[kV_{B\left(L-N\right)}\right]^{2}}{MVA_{B\left(1\Phi\right)}} =\dfrac{\left[kV_{B\left(L-L\right)}\right]^{2}}{MVA_{B\left(3\Phi\right)}} \end{aligned}\]
Note: for balanced system \(1-\Phi\)\(3-\Phi\)

Per-Unit Representation of a Transformer

  • a \(3-\phi\) transformer forming part of a \(3-\phi\) system can be represented by a \(1-\phi\) transformer in obtaining per phase solution of the system

  • The \(\varDelta\)-connected winding is replaced by an equivalent \(Y\) so that the transformation ratio of the equivalent \(1-\phi\) is always the line-to-line voltage ratio of the \(3-\phi\) transformer

image
  • \[\dfrac{V_{1B}}{V_{2B}} = \dfrac{1}{a}\]
    \[\begin{aligned} V_{2} & =\left(V_{1}-I_{1}Z_{p}\right)a-I_{2}Z_{s}\\ \Longrightarrow V_{2\left(pu\right)}V_{2B} & =\left[V_{1\left(pu\right)}V_{1B}-I_{1\left(pu\right)}I_{1B}Z_{p\left(pu\right)}Z_{1B}\right]a-\\ &I_{2\left(pu\right)}I_{2B}Z_{s\left(pu\right)}Z_{2B}\\ \Longrightarrow V_{2\left(pu\right)} & =V_{1\left(pu\right)}-I_{1\left(pu\right)}Z_{p\left(pu\right)}-I_{2\left(pu\right)}Z_{s\left(pu\right)} \end{aligned}\]
    \[Z_{1B}=\dfrac{V_{1B}}{I_{1B}},~Z_{2B}=\dfrac{V_{2B}}{I_{2B}}\]
    \((VA)_{B}\)\(\dfrac{I_{1B}}{I_{2B}} = a\) and voltage bases on two sides of a transformer in the ratio of transformation, i.e. Let us choose
\[\begin{aligned} \dfrac{I_{1}}{I_{2}} & =\dfrac{I_{1B}}{I_{2B}}=a\\ \Longrightarrow\dfrac{I_{1}}{I_{1B}} & =\dfrac{I_{2}}{I_{2B}}\\ \Longrightarrow I_{1\left(pu\right)} & =I_{2\left(pu\right)}=I_{\left(pu\right)} \end{aligned}\]
Since,
\[\begin{aligned} V_{2\left(pu\right)} & =V_{1\left(pu\right)}-I_{\left(pu\right)}\left(Z_{p\left(pu\right)}+Z_{s\left(pu\right)}\right)\\ & =V_{1\left(pu\right)}-I_{\left(pu\right)}Z_{\left(pu\right)} \end{aligned}\]
Therefore,

\(\Longrightarrow\) represents a simple equivalent circuit without ideal transformer.

  • Thus, considerable simplification has been achieved with pu method

  • \[\begin{aligned} Z_{1} & =Z_{p}+Z_{s}/a^{2}\\ \Longrightarrow\dfrac{Z_{1}}{Z_{1B}} & =\dfrac{Z_{p}}{Z_{1B}}+\dfrac{Z_{s}}{a^{2}Z_{1B}}~\left(NOTE:~a^{2}Z_{1B}=Z_{2B}\right)\\ \Longrightarrow Z_{1\left(pu\right)} & =Z_{p\left(pu\right)}+Z_{s\left(pu\right)}=Z_{\left(p\right)} \end{aligned}\]
    On secondary side, \(Z_{eq}\)\(Z_{pu}\)
  • Thus, \(Z_{1\left(pu\right)} = Z_{2\left(pu\right)}\) provided voltage bases on the two sides are in the ratio of transformation.