Types of Overhead Power Transmission Systems

Demonstrative Video


Lecture-6: Overview


Various Systems of Power Transmission

D.C. system

  • D.C. 2-wire

  • D.C. 2-wire with mid-point earthed

  • D.C. 3-wire

\(1\phi\) A.C. system

  • \(1\phi\) 2-wire

  • \(1\phi\) 2-wire with mid-point earthed

  • \(1\phi\) 3-wire

\(2\phi\) A.C. Systems

  • \(2\phi\) 3-wire

  • \(2\phi\) 4-wire

\(3\phi\) A.C. Systems

  • \(3\phi\) 3-wire

  • \(3\phi\) 4-wire


Criteria to Determine the Best System

Assumptions in each case:


Overhead System

image

2-wire d.c. system with one conductor earthed

image

  • Max. voltage between conductors \(=V_{m}\)

  • Power to be transmitted \(=P\)

  • Load current, \(I_{1}=P / V_{m}\)


Two-wire d.c. system with mid-point earthed

image

  • Load current, \(I_{2}=P / 2 V_{m}\)

  • Line losses \[\begin{aligned} W &=2 I_{2}^{2} R_{2}=2\left(\frac{P}{2 V_{m}}\right)^{2} \times \frac{\rho l}{a_{2}} \\ &\left[\because R_{2}=\rho l / a_{2}\right] \\ \therefore \quad W &=\frac{P^{2} \rho l}{2 a_{2} V_{m}^{2}} \end{aligned}\]


Three-wire d.c. system

Assume balanced loads & neutral wire X-section area = \(1/2^\ast\) outer wire

image

  • Load current, \(I_{3}=P / 2 V_{m}\)

  • Line losses \[\begin{array}{l} W=2 I_{3}^{2} R_{3}=2\left(\frac{P}{2 V_{m}}\right)^{2} \times \rho \frac{l}{a_{3}}\\ =\frac{P^{2} \rho l}{2 V_{m}^{2} a_{3}} \end{array}\]


\(1\phi\), 2-wire a.c. system with one conductor earthed

R.M.S value of the voltage = \(V_m / \sqrt{2}\). Assume the p.f. of the load \(=\cos\phi\)

image

  • \(\text { Load current, } I_{4}=\frac{P}{\left(V_{m} / \sqrt{2}\right) \cos \phi}=\frac{\sqrt{2} P}{V_{m} \cos \phi}\)

  • \(\text { Line losses, } W=2 I_{4}^{2} R_{4}=2\left(\frac{\sqrt{2} P}{V_{m} \cos \phi}\right)^{2} \times \frac{\rho l}{a_{4}}=\frac{4 P^{2} \rho l}{\cos ^{2} \phi V_{m}^{2} a_{4}}\)


\(1\phi\), 2-wire system with mid-point earthed

R.M.S value of the voltage = \(2 V_{m} / \sqrt{2}=\sqrt{2} V_{m}\)

image

  • \(\text { Load current, } I_{5}=\frac{P}{\sqrt{2} V_{m} \cos \phi}\)

  • \(\text { Line losses, } W=2 I_{5}^{2} R_{5}=2\left(\frac{P}{\sqrt{2} V_{m} \cos \phi}\right)^{2} R_{5}\) \[W=\frac{P^{2} \rho l}{a_{5} V_{m}^{2} \cos ^{2} \phi}\]


\(1\phi\), 3-wire system

RM.S.value of voltage between conductors \(=2 V_{m} / \sqrt{2}=\sqrt{2} V_{m}\)

image

  • \(\text { Load current, } I_{6}=\frac{P}{\sqrt{2} V_{m} \cos \phi}\)

  • \(\text { Line losses, } W =2 I_{6}^{2} R_{6}\) \[\begin{aligned} & =2\left(\frac{P}{\sqrt{2} V_{m} \cos \phi}\right)^{2} \times \frac{\rho l}{a_{6}} =\frac{P^{2} \rho l}{a_{6} V_{m}^{2} \cos ^{2} \phi} \end{aligned}\]


\(2\phi\), 4-wire a.c. system

image

  • \(\text { Load current, } I_{7}=\frac{P / 2}{\sqrt{2} V_{m} \cos \phi}=\frac{P}{2 \sqrt{2} V_{m} \cos \phi}\)

  • \(\text { Line losses, } W=4 I_{7}^{2} R_{7}=4\left(\frac{P}{2 \sqrt{2} V_{m} \cos \phi}\right)^{2} \times \frac{\rho l}{a_{7}}=\frac{P^{2} \rho l}{2 a_{7} V_{m}^{2} \cos ^{2} \phi}\)


\(2\phi\), 3-wire system

R.M.S voltage between outgoing conductor and neutral \(=V_{m} / \sqrt{2}\)

image

  • \(\text { Current in each outer, } I_{8}=\frac{P / 2}{\frac{V_{m}}{\sqrt{2}} \cos \phi}=\frac{P}{\sqrt{2} V_{m} \cos \phi}\)

  • Current in neutral wire \(=\sqrt{I_{8}^{2}+I_{8}^{2}}=\sqrt{2} I_{8}\)

Assuming the current density to be constant, the area of X-section of the neutral wire will be \(\sqrt{2}\) \(*\) either of the outers.


\[\begin{aligned} &=\left(\frac{P}{\sqrt{2} V_{m} \cos \phi}\right)^{2} \times \frac{\rho l}{a_{8}}(2+\sqrt{2}) \\ W &=\frac{P^{2} \rho l}{2 a_{8} V_{m}^{2} \cos ^{2} \phi}(2+\sqrt{2}) \end{aligned}\] \(\therefore \quad\) Area of \(\mathrm{X}\) -section, \(a_{8}=\frac{P^{2} \rho l}{2 W V_{m}^{2} \cos ^{2} \phi}(2+\sqrt{2})\)

Volume of conductor material required \[\begin{array}{l} =2 a_{8} l+\sqrt{2} a_{8} l=a_{8} l(2+\sqrt{2}) \\ =\frac{P^{2} \rho l^{2}}{2 W V_{m}^{2} \cos ^{2} \phi}(2+\sqrt{2})^{2} \\ =\frac{1 \cdot 457}{\cos ^{2} \phi} K \end{array}\]

\(3\phi\), 3-wire system

image

  • Load current per phase, \(I_{9}=\frac{P / 3}{\left(V_{m} / \sqrt{2} \cos \phi\right)}=\frac{\sqrt{2} P}{3 V_{m} \cos \phi}\)

  • Line losses, \(W=3 I_{9}^{2} R_{9}=3\left(\frac{\sqrt{2} P}{3 V_{m} \cos \phi}\right)^{2} \frac{\rho l}{a_{9}}=\frac{2 P^{2} \rho l}{3 a_{9} V_{m}^{2} \cos ^{2} \phi}\)


\(3\phi\), 4-wire system

image

  • Line losses, \(W=\) Same as \(3\phi\), 3 -wire \[=\frac{2 P^{2} \rho l}{3 a_{10} V_{m}^{2} \cos ^{2} \phi}\]

  • Area of \(\mathrm{X}\) -section, \(a_{10}=\frac{2 P^{2} \rho l}{3 W V_{m}^{2} \cos ^{2} \phi}\)

\(\therefore \quad\) Volume of conductor material required \[\begin{array}{l} =3 \cdot 5 a_{10} l=3 \cdot 5\left(\frac{2 P^{2} \rho l}{3 W V_{m}^{2} \cos ^{2} \phi}\right) \times l \\ =\frac{7 P^{2} \rho l^{2}}{3 W V_{m}^{2} \cos ^{2} \phi}=\frac{7}{3 \cos ^{2} \phi} \times \frac{P^{2} \rho l^{2}}{W V_{m}^{2}} \\ =\frac{7 K}{12 \cos ^{2} \phi} \end{array}\]