Medium Transmission Lines

Demonstrative Video


Medium Transmission line


Nominal \(\mathrm{T}\) representation

image

Let, \(V_{c} =\) voltage across the capacitor and \(Y = j\omega C\) \[\begin{aligned} V_{c} & =V_{r}+I_{r}\left(Z/2\right)\\ I_{S} & =I_{r}+V_{c}Y\\ &=I_{r}+Y \cdot V_{r}+I_{r}\left(Z/2\right)\cdot Y\\ V_{s} & =V_{c}+I_{s}\left(Z/2\right) \end{aligned}\]

Substituting \(V_{c}\) and \(I_{s}\) in \(V_{s}\) \[V_{s}=V_{r}\left(1+\dfrac{YZ}{2}\right)+I_{r}Z\left(1+\dfrac{YZ}{4}\right)\]

$$\boxed{ \left[\begin{array}{c} V_s \\ I_s \end{array}\right]=\left[\begin{array}{cc} \left(1+\frac{Y Z}{2}\right) & Z\left(1+\frac{Y Z}{4}\right) \\ Y & \left(1+\frac{Y Z}{2}\right) \end{array}\right]\left[\begin{array}{c} V_r \\ I_r \end{array}\right] }$$

\[\begin{aligned} A & = \left(1+\dfrac{YZ}{2}\right) & B & = Z\left(1+\dfrac{YZ}{4}\right)\\ C & = Y & D & = \left(1+\dfrac{YZ}{2}\right) \end{aligned}\]


Nominal \(\mathrm{Pi}\) representation

image \[\begin{aligned} I_{s} & =I_{r}+V_{r}\dfrac{Y}{2}+V_{s}\dfrac{Y}{2}\\ V_{s} & =V_{r}+\left(I_{r}+V_{r}\dfrac{Y}{2}\right)Z\\ &=V_{r}\left(1+\dfrac{YZ}{2}\right)+I_{r}Z \end{aligned}\]

\(\therefore I_{s}=V_{r}Y\left(1+\dfrac{YZ}{4}\right)+I_{r}\left(1+\dfrac{YZ}{2}\right)\)

Hence,

$$\boxed{ \left[\begin{array}{c} V_s \\ I_s \end{array}\right]=\left[\begin{array}{cc} \left(1+\frac{Y Z}{2}\right) & Z \\ Y\left(1+\frac{Y Z}{4}\right) & \left(1+\frac{Y Z}{2}\right) \end{array}\right]\left[\begin{array}{c} V_r \\ I_r \end{array}\right] }$$

\[\begin{aligned} A& = \left(1+\dfrac{YZ}{2}\right) & B& = Z\\ C & =Y\left(1+\dfrac{YZ}{4}\right) & D & = \left(1+\dfrac{YZ}{2}\right)\\ \end{aligned}\]