TL having a length more than 240 km
Parameters are uniformly distributed along the whole length of the line.
Line may be divided into various sections, and each section consists of an inductance, capacitance, resistance and conductance
\[\begin{aligned} dV_{x} & =I_{x}zdx\Rightarrow\dfrac{dV_{x}}{dx}=zI_{x}\\ dI_{x} & =V_{x}ydx\Rightarrow\dfrac{dI_{x}}{dx}=yV_{x} \end{aligned}\]
\[\dfrac{d^{2}V_{x}}{dx^{2}}=\dfrac{dI_{x}}{dx}z=yV_{x}z\] \[V_{x}=C_{1}e^{\gamma x}+C_{2}e^{-\gamma x}\]
where \(\boxed{\gamma=\sqrt{yz}}\) \[\dfrac{dV_{x}}{dx}=C_{1}\gamma e^{\gamma x}-C_{2}\gamma e^{-\gamma x}=zI_{x}\] \[\therefore I_{x}=\dfrac{C_{1}}{Z_{c}}e^{\gamma x}-\dfrac{C_{2}}{Z_{c}}e^{-\gamma x}\] where \[\boxed{Z_{c}=\sqrt{\left(\dfrac{z}{y}\right)}}\]
\[\begin{aligned} V_{x}&=C_{1}e^{\gamma x}+C_{2}e^{-\gamma x}\\ I_{x}&=\dfrac{C_{1}}{Z_{c}}e^{\gamma x}-\dfrac{C_{2}}{Z_{c}}e^{-\gamma x} \end{aligned}\] Applying boundary condition: \[\begin{array}{c} V_{R}=C_{1}+C_{2}\\ I_{R}=\dfrac{1}{Z_{c}}\left(C_{1}-C_{2}\right) \end{array}\Rightarrow\begin{cases} C_{1}=\dfrac{1}{2}\left(V_{R}+I_{R}Z_{c}\right)\\ C_{2}=\dfrac{1}{2}\left(V_{R}-I_{R}Z_{c}\right) \end{cases}\] \[\begin{aligned} V_{x} & =\left(\dfrac{V_{R}+I_{R}Z_{c}}{2}\right)e^{\gamma x}+\left(\dfrac{V_{R}-I_{R}Z_{c}}{2}\right)e^{-\gamma x}\\ I_{x} & =\left(\dfrac{V_{R}/Z_{c}+I_{R}}{2}\right)e^{\gamma x}+\left(\dfrac{V_{R}/Z_{c}-I_{R}}{2}\right)e^{-\gamma x} \end{aligned}\]
\[\begin{aligned} V_{x} & =V_{R}\left(\dfrac{e^{\gamma x}+e^{-\gamma x}}{2}\right)+I_{R}Z_{c}\left(\dfrac{e^{\gamma x}-e^{-\gamma x}}{2}\right)\\ &=V_{R}cosh\left(\gamma x\right)+I_{R}Z_{c}sinh\left(\gamma x\right) \end{aligned}\]
\[\begin{aligned} I_{x} & =V_{R}\dfrac{1}{Z_{c}}\left(\dfrac{e^{\gamma x}-e^{-\gamma x}}{2}\right)e^{\gamma x}+I_{R}\left(\dfrac{e^{\gamma x}+e^{-\gamma x}}{2}\right)\\ &=I_{R}cosh\left(\gamma x\right)+V_{R}\dfrac{1}{Z_{c}}sinh\left(\gamma x\right) \end{aligned}\] when \(x = l, \quad V_{x} = V_{s}, \quad I_{x} = I_{s}\)
$$\boxed{ \left[\begin{array}{c} V_S \\ I_S \end{array}\right]=\left[\begin{array}{cc} \cosh (\gamma l) & Z_c \sinh (\gamma l) \\ \frac{1}{Z_c} \sinh (\gamma l) & \cosh (\gamma l) \end{array}\right]\left[\begin{array}{c} V_R \\ I_R \end{array}\right] }$$
\[\gamma=\sqrt{yz}=\alpha+j\beta\] The hyperbolic function of complex numbers involved in evaluating ABCD constants can be computed by any of the following three methods:
\[\begin{aligned} cosh\left(\alpha l+j\beta l\right) & =cosh\left(\alpha l\right)cos\left(\beta l\right)+jsinh\left(\alpha l\right)sin\left(\beta l\right)\\ sinh\left(\alpha l+j\beta l\right) & =sinh\left(\alpha l\right)cos\left(\beta l\right)+jcosh\left(\alpha l\right)sin\left(\beta l\right) \end{aligned}\]
The trigonometric values can be looked from standard tables.
\[\begin{aligned} cosh\left(\gamma l\right) & =1+\dfrac{\gamma^{2}l^{2}}{2!}+\dfrac{\gamma^{4}l^{4}}{4!}+\cdots\approx\left(1+\dfrac{YZ}{2}\right)\\ sinh\left(\gamma l\right) & =\gamma l+\dfrac{\gamma^{3}l^{3}}{3!}+\dfrac{\gamma^{5}l^{5}}{5!}+\cdots\approx\sqrt{YZ}\left(1+\dfrac{YZ}{6}\right) \end{aligned}\] This series converges rapidly for values of \(\gamma l\) and can be conveniently approximated \[\begin{aligned} A & =D\approx\left(1+\dfrac{YZ}{2}\right)\\ B & \approx Z\left(1+\dfrac{YZ}{6}\right)\\ C & \approx Y\left(1+\dfrac{YZ}{6}\right) \end{aligned}\]
\[\begin{aligned} cosh\left(\alpha l+j\beta l\right) & =\dfrac{1}{2}\left(e^{\alpha l}\angle\beta l+e^{-\alpha l}\angle-\beta l\right)\\ sinh\left(\alpha l+j\beta l\right) & =\dfrac{1}{2}\left(e^{\alpha l}\angle\beta l-e^{-\alpha l}\angle-\beta l\right) \end{aligned}\]
\[\gamma=\alpha+j\beta\]
Real part \(\alpha\) : | |
Imaginary part \(\beta\) : |
\[\begin{aligned} V_{x} & =\left|\dfrac{V_{R}+I_{R}Z_{c}}{2}\right|e^{\alpha x}e^{j\left(\beta x+\phi_{1}\right)}+\left|\dfrac{V_{R}-I_{R}Z_{c}}{2}\right|e^{-\alpha x}e^{-j\left(\beta x-\phi_{2}\right)} \end{aligned}\]
Instantaneous voltage, \(v_{x}\left(t\right) =v_{x1}+v_{x2}\)
\[\begin{cases} v_{x1} & =\sqrt{2}\left|\dfrac{V_{R}+I_{R}Z_{c}}{2}\right|e^{\alpha x}cos\left(\omega t+\beta x+\phi_{1}\right)\\ v_{x2} & =\sqrt{2}\left|\dfrac{V_{R}-I_{R}Z_{c}}{2}\right|e^{-\alpha x}cos\left(\omega t-\beta x+\phi_{2}\right) \end{cases}\]
where: \[\begin{aligned} \phi_{1} & = \angle\left(V_{R}+I_{R}Z_{c}\right)\\ \phi_{2} & = \angle\left(V_{R}-I_{R}Z_{c}\right) \end{aligned}\]
\(v_{x}\left(t\right)\) is a function of two variables - time & distance
Represents two travelling waves: Incident and reflected waves