Load Flow Analysis Using Newton-Raphson Method

Demonstrative Video


Newton-Raphson Method

Assume initial estimates of the \(n\) variables as \(x_{1}^{(0)}, x_{2}^{(0)}, \cdots, x_{n}^{(0)}\) and add corrections \(\varDelta x_{1}^{(0)},\varDelta x_{2}^{(0)}, \cdots,\varDelta x_{n}^{(0)}\) to get correct solution of these variables \[\begin{aligned} x_{1}^{*} & =x_{1}^{(0)}+\varDelta x_{1}^{(0)}\\ x_{2}^{*} & =x_{2}^{(0)}+\varDelta x_{2}^{(0)}\\ & \vdots\\ x_{n}^{*} & =x_{n}^{(0)}+\varDelta x_{n}^{(0)} \end{aligned}\]

Equation can be written in vector-matrix form as \[\left[\begin{array}{cccc} \dfrac{\partial g_{1}}{\partial x_{1}} & \dfrac{\partial g_{1}}{\partial x_{2}} & \cdots & \dfrac{\partial g_{1}}{\partial x_{n}}\\ \dfrac{\partial g_{2}}{\partial x_{1}} & \dfrac{\partial g_{2}}{\partial x_{2}} & \cdots & \dfrac{\partial g_{2}}{\partial x_{n}}\\ \vdots & \vdots & \ddots & \vdots\\ \dfrac{\partial g_{n}}{\partial x_{1}} & \dfrac{\partial g_{n}}{\partial x_{2}} & & \dfrac{\partial g_{n}}{\partial x_{n}} \end{array}\right]^{\left(0\right)}\left[\begin{array}{c} \varDelta x_{1}^{(0)}\\ \varDelta x_{2}^{(0)}\\ \vdots\\ \varDelta x_{n}^{(0)} \end{array}\right]=\left[\begin{array}{c} 0-g_{1}\left(x_{1}^{(0)},\cdots,x_{n}^{(0)}\right)\\ 0-g_{2}\left(x_{1}^{(0)},\cdots,x_{n}^{(0)}\right)\\ \vdots\\ 0-g_{n}\left(x_{1}^{(0)},\cdots,x_{n}^{(0)}\right) \end{array}\right]\] Jacobian matrix, \(J\) : the square matrix of partial derivatives

\[\left[\begin{array}{c} \varDelta x_{1}^{(0)}\\ \varDelta x_{2}^{(0)}\\ \vdots\\ \varDelta x_{n}^{(0)} \end{array}\right]=\left[J^{\left(0\right)}\right]^{-1}\left[\begin{array}{c} \varDelta g_{1}^{(0)}\\ \varDelta g_{2}^{(0)}\\ \vdots\\ \varDelta g_{n}^{(0)} \end{array}\right]\]

Load Flow By Newton-Raphson Method

At each iteration form a Jacobian matrix and solve for the corrections

equation* J=

The Jacobian matrix is divided into sub-matrices as \[J=\left[\begin{array}{cc} J_{11} & J_{12}\\ J_{21} & J_{22} \end{array}\right]\] Size of the Jacobian matrix is

\[\left(n + n_p -1\right) \times \left(n + n_p -1\right)\]

Dimensions of the sub-matrices are as follows \[\begin{array}{cc} J_{11}: & \left(n-1\right)\times\left(n-1\right)\\ J_{12}: & \left(n-1\right)\times n_{p}\\ J_{21}: & n_{p}\times\left(n-1\right)\\ J_{22}: & n_{p}\times n_{p} \end{array}\]

\[ \begin{aligned} J_{11} & =\left[\begin{array}{ccc} \dfrac{\partial P_{2}}{\partial\delta_{2}} & \cdots & \dfrac{\partial P_{2}}{\partial\delta_{n}}\\ \vdots & \ddots\\ \dfrac{\partial P_{n}}{\partial\delta_{2}} & & \dfrac{\partial P_{n}}{\partial\delta_{n}} \end{array}\right]~~~~~~~J_{12}=\left[\begin{array}{ccc} \left|V_{2}\right|\dfrac{\partial P_{2}}{\partial\left|V_{2}\right|} & \cdots & \left|V_{1+n_{p}}\right|\dfrac{\partial P_{2}}{\partial\left|V_{1+n_{p}}\right|}\\ \vdots & \ddots\\ \left|V_{2}\right|\dfrac{\partial P_{n}}{\partial\left|V_{2}\right|} & \cdots & \left|V_{1+n_{p}}\right|\dfrac{\partial P_{n}}{\partial\left|V_{1+n_{p}}\right|} \end{array}\right]\\ J_{21} & =\left[\begin{array}{ccc} \dfrac{\partial Q_{2}}{\partial\delta_{2}} & \cdots & \dfrac{\partial Q_{2}}{\partial\delta_{n}}\\ \vdots & \ddots\\ \dfrac{\partial Q_{1+n_{p}}}{\partial\delta_{2}} & \cdots & \dfrac{\partial Q_{1+n_{p}}}{\partial\delta_{n}} \end{array}\right]\:J_{22}=\left[\begin{array}{ccc} \left|V_{2}\right|\dfrac{\partial Q_{2}}{\partial\left|V_{2}\right|} & \cdots & \left|V_{1+n_{p}}\right|\dfrac{\partial Q_{2}}{\partial\left|V_{1+n_{p}}\right|}\\ \vdots & \ddots\\ \left|V_{2}\right|\dfrac{\partial Q_{1+n_{p}}}{\partial\left|V_{2}\right|} & \cdots & \left|V_{1+n_{p}}\right|\dfrac{\partial Q_{1+n_{p}}}{\partial\left|V_{1+n_{p}}\right|} \end{array}\right] \end{aligned} \]

Load Flow Algorithm

The Newton-Raphson procedure is as follows:

Choose the initial values of the voltage magnitudes \(\left|V\right|^{(0)}\) for all \(n_p\) load buses and \(n-1\) angles \(\delta^{(0)}\) of the voltages of all the buses except the slack bus

Use the estimated \(\left|V\right|^{(0)}\) and \(\delta^{(0)}\) to calculate a total \(n-1\) number of injected real power \(P_{calc}^{(0)}\) and equal number of real power mismatch \(\varDelta P^{(0)}\)

Use the estimated \(\left|V\right|^{(0)}\) and \(\delta^{(0)}\) to calculate a total \(n_p\) number of injected reactive power \(Q_{calc}^{(0)}\) and equal number of reactive power mismatch \(\varDelta Q^{(0)}\)

Use the estimated \(\left|V\right|^{(0)}\) and \(\delta^{(0)}\) to form the Jacobian matrix \(J^{(0)}\)

Solve equation for \(\delta^{(0)}\) and \(\varDelta \left|V\right|^{(0)} \div \left|V\right|^{(0)}\)

Obtain the updates

\[\begin{aligned} \delta^{(1)} & =\delta^{(0)}+\varDelta\delta^{(0)}\\ \left|V\right|^{(1)} & =\left|V\right|^{(0)}\left[1+\dfrac{\varDelta\left|V\right|^{(0)}}{\left|V\right|^{(0)}}\right] \end{aligned}\]

Check if all the mismatches are below a small number. Terminate the process if yes. Otherwise go back to step-1 to start the next iteration

Formation of the Jacobian Matrix

\[\begin{aligned} P_{i} & =\left|V_{i}\right|^{2}G_{ii}+{\displaystyle \sum_{\begin{array}{c} k=1\\ k\neq i \end{array}}^{n}\left|Y_{ik}V_{i}V_{k}\right|cos\left(\theta_{ik}+\delta_{k}-\delta_{i}\right)}\\ Q_{i} & =-\left|V_{i}\right|^{2}B_{ii}-\sum_{\begin{array}{c} k=1\\ k\neq i \end{array}}^{n}\left|Y_{ik}V_{i}V_{k}\right|sin\left(\theta_{ik}+\delta_{k}-\delta_{i}\right) \end{aligned}\] \[J=\left[\begin{array}{cc} J_{11} & J_{12}\\ J_{21} & J_{22} \end{array}\right]\]

Formation of \(J_{11}\)

\[J_{11}=\left[\begin{array}{ccc} L_{22} & \cdots & L_{2n}\\ \vdots & \ddots & \vdots\\ L_{n2} & \cdots & L_{nn} \end{array}\right]\]

\[\begin{aligned} L_{ik} & =\dfrac{\partial P_{i}}{\partial\delta_{k}}=-\left|Y_{ik}V_{i}V_{k}\right|sin\left(\theta_{ik}+\delta_{k}-\delta_{i}\right),~i\neq k\\ L_{ii} & =\dfrac{\partial P_{i}}{\partial\delta_{i}}=\sum_{\begin{array}{c} k=1\\ k\neq i \end{array}}^{n}\left|Y_{ik}V_{i}V_{k}\right|sin\left(\theta_{ik}+\delta_{k}-\delta_{i}\right)\\ & =-Q_{i}-\left|V_{i}\right|^{2}B_{ii} \end{aligned}\]

Formation of \(J_{21}\)

\[J_{21}=\left[\begin{array}{ccc} M_{22} & \cdots & M_{2n}\\ \vdots & \ddots & \vdots\\ M_{n2} & \cdots & M_{nn} \end{array}\right]\] \[\begin{aligned} M_{ik} & =\dfrac{\partial Q_{i}}{\partial\delta_{k}}=-\left|Y_{ik}V_{i}V_{k}\right|cos\left(\theta_{ik}+\delta_{k}-\delta_{i}\right),i\neq k\\ M_{ii} & =\dfrac{\partial Q_{i}}{\partial\delta_{i}}=\sum_{\begin{array}{c} k=1\\ k\neq i \end{array}}^{n}\left|Y_{ik}V_{i}V_{k}\right|cos\left(\theta_{ik}+\delta_{k}-\delta_{i}\right)\\ & = P_{i}-\left|V_{i}\right|^{2}G_{ii} \end{aligned}\]

Formation of \(J_{12}\) \[J_{12}=\left[\begin{array}{ccc} N_{22} & \cdots & N_{2n}\\ \vdots & \ddots & \vdots\\ N_{n2} & \cdots & N_{nn} \end{array}\right]\] \[ \begin{aligned} N_{ik} & =\left|V_{k}\right|\dfrac{\partial P_{i}}{\partial\left|V_{k}\right|}=\left|Y_{ik}V_{i}V_{k}\right|cos\left(\theta_{ik}+\delta_{k}-\delta_{i}\right)=-M_{ik},i\neq k\\ N_{ii} & =\left|V_{i}\right|\dfrac{\partial P_{i}}{\partial\left|V_{i}\right|}=\left|V_{i}\right|\left[2\left|V_{i}\right|G_{ii}+\sum_{\begin{array}{c} k=1\\ k\neq i \end{array}}^{n}\left|Y_{ik}V_{k}\right|cos\left(\theta_{ik}+\delta_{k}-\delta_{i}\right)\right]\\ & =2\left|V_{i}\right|^{2}G_{ii}+\sum_{\begin{array}{c} k=1\\ k\neq i \end{array}}^{n}\left|Y_{ik}V_{i}V_{k}\right|cos\left(\theta_{ik}+\delta_{k}-\delta_{i}\right)\\ & =2\left|V_{i}\right|^{2}G_{ii}+M_{ii} \end{aligned} \]

Formation of \(J_{22}\) \[J_{22}=\left[\begin{array}{ccc} O_{22} & \cdots & O_{2n}\\ \vdots & \ddots & \vdots\\ O_{n2} & \cdots & O_{nn} \end{array}\right]\] \[ \begin{aligned} O_{ik} & =\left|V_{i}\right|\dfrac{\partial Q_{i}}{\partial\left|V_{k}\right|}=-\left|V_{i}\right|\left|Y_{ik}V_{i}V_{k}\right|sin\left(\theta_{ik}+\delta_{k}-\delta_{i}\right)=L_{ik},~i\neq k\\ O_{ii} & =\left|V_{i}\right|\dfrac{\partial Q_{i}}{\partial\left|V_{k}\right|}=\left|V_{i}\right|\left[-2\left|V_{i}\right|B_{ii}-\sum_{\begin{array}{c} k=1\\ k\neq i \end{array}}^{n}\left|Y_{ik}V_{k}\right|sin\left(\theta_{ik}+\delta_{k}-\delta_{i}\right)\right]\\ & =-2\left|V_{i}\right|^{2}B_{ii}-\sum_{\begin{array}{c} k=1\\ k\neq i \end{array}}^{n}\left|Y_{ik}V_{i}V_{k}\right|sin\left(\theta_{ik}+\delta_{k}-\delta_{i}\right)\\ & =-2\left|V_{i}\right|^{2}B_{ii}-L_{ii} \end{aligned} \]

Solution of Newton-Raphson Load Flow

\[ \begin{aligned} L_{23}^{(0)} & =-\left|Y_{23}V_{2}^{(0)}V_{3}^{(0)}\right|sin\left(\theta_{23}+\delta_{3}-\delta_{2}\right)\\ &=-\left|Y_{23}\right|sin\theta_{23}=-B_{23}=-4.8077\\ Q_{2}^{(0)} & =-\left|V_{2}^{(0)}\right|^{2}B_{22}-{\displaystyle \sum_{\begin{array}{c} k=1\\ k\neq2 \end{array}}^{n}\left|Y_{2k}V_{2}^{(0)}V_{k}^{(0)}\right|sin\left(\theta_{2k}+\delta_{k}-\delta_{2}\right)}\\ & =-B_{22}-1.05B_{21}-B_{23}-B_{24}-1.02B_{25}=-0.6327\\ L_{22}^{(0)} & =-Q_{2}^{(0)}-\left|V_{2}^{(0)}\right|^{2}B_{22}=-0.6327-B_{22}=18.8269 \end{aligned} \]

\[J_{11}^{(0)}=\left[\begin{array}{cccc} 18.8269 & -4.8077 & 0 & -3.9231\\ -4.8077 & 11.1058 & -3.8462 & -2.4519\\ 0 & -3.8462 & 5.8077 & -1.9615\\ -3.9231 & -2.4519 & -1.9615 & 12.4558 \end{array}\right]\] \[\begin{aligned} M_{23}^{(0)} & =-\left|Y_{23}V_{2}^{(0)}V_{3}^{(0)}\right|cos\left(\theta_{23}+\delta_{2}-\delta_{3}\right)=-G_{23}=0.9615\\ P_{2}^{(0)} & =\left|V_{2}^{(0)}\right|^{2}G_{22}+{\displaystyle \sum_{\begin{array}{c} k=1\\ k\neq2 \end{array}}^{n}}\left|Y_{2k}V_{2}^{(0)}V_{k}^{(0)}\right|cos\left(\theta_{2k}+\delta_{k}-\delta_{2}\right)\\ & =G_{22}+1.05G_{21}+G_{23}+G_{24}+1.02G_{25}=-0.1115\\ M_{22} & =P_{2}^{(0)}-\left|V_{2}^{(0)}\right|^{2}G_{22}=-3.7654 \end{aligned}\]

\[ J_{21}=M\left(1:3,1:4\right)~and~J_{12}=-M\left(1:4,1:3\right)\Longleftarrow M=\left[\begin{array}{cccc} M_{11} & M_{12} & M_{13} & M_{14}\\ M_{21} & M_{22} & M_{23} & M_{24}\\ M_{31} & M_{32} & M_{33} & M_{34}\\ M_{41} & M_{42} & M_{43} & M_{44} \end{array}\right] \]

\[J_{21}^{(0)}=\left[\begin{array}{cccc} -3.7654 & 0.9615 & 0 & 0.7846\\ 0.9615 & -2.2212 & 0.7692 & 0.4904\\ 0 & 0.7692 & -1.1615 & 0.3923 \end{array}\right]\]

\[J_{12}^{(0)}=\left[\begin{array}{ccc} 3.5423 & -0.9615 & 0\\ -0.9615 & 2.2019 & -0.7692\\ 0 & -0.7692 & 1.1462\\ 0.7846 & -0.4904 & -0.3923 \end{array}\right]\]

\[J_{22}^{(0)}=\left[\begin{array}{ccc} 17.5615 & -4.8077 & 0\\ -4.8077 & 10.8996 & -3.8462\\ 0 & -3.8462 & 5.5408 \end{array}\right]\]

From the initial conditions the power and reactive power are computed as \[\begin{aligned} P_{calc}^{(0)} & =\left[\begin{array}{cccc} -0.1115 & -0.0096 & -0.0077 & -0.0098\end{array}\right]^{T}\\ Q_{calc}^{(0)} & =\left[\begin{array}{ccc} -0.6327 & -0.1031 & -0.1335\end{array}\right]^{T} \end{aligned}\] Consequently the mismatches are found to be \[\begin{aligned} \varDelta P^{(0)} & =\left[\begin{array}{cccc} -0.8485 & -0.3404 & -0.1523 & 0.2302\end{array}\right]^{T}\\ \varDelta Q^{(0)} & =\left[\begin{array}{ccc} 0.0127 & -0.0369 & 0.0535\end{array}\right]^{T} \end{aligned}\]

Then the updates at the end of the first iteration are given as \[\left[\begin{array}{c} \delta_{2}^{(0)}\\ \delta_{3}^{(0)}\\ \delta_{4}^{(0)}\\ \delta_{5}^{(0)} \end{array}\right]=\left[\begin{array}{c} -4.91\\ -6.95\\ -7.19\\ -3.09 \end{array}\right]deg~~\left[\begin{array}{c} \left|V_{2}\right|^{(0)}\\ \left|V_{3}\right|^{(0)}\\ \left|V_{4}\right|^{(0)} \end{array}\right]=\left[\begin{array}{c} 0.9864\\ 0.9817\\ 0.9913 \end{array}\right]\] Load flow converges in 7 iterations when all \(\varDelta P\) and \(\varDelta Q\) are below \(10^{-6}\)

Load Flow Results Conclusions

image

image \[\begin{aligned} I_{12} & =0.9623-j0.5187=1.0932\angle-28.33^{0}~pu\\ S_{12} & =V_{1}I_{12}^{*}\times100=-101.0395-j54.4645~MW\\ S_{21} & =V_{2}I_{12}^{*}\times100=98.6494+j42.5141~MW \end{aligned}\]

-ve sign in power indicates the power is leaving the bus (leaving the bus-1 and entering the bus-2)