Review of Fundamental Concepts of Power Systems

Demonstrative Video


Lecture-2: Overview


Sinusoidal \(V\) and \(I\) in Steady State

Convention for \(V\) and \(I\) image


Phasor Representation

image

\[\begin{aligned} v(t) & =\sqrt{2} V \cos \left(\omega t+\phi_{v}\right) \\ \Leftrightarrow \overrightarrow{V}& =V \angle \phi_{v} \\ i(t) & =\sqrt{2} I \cos \left(\omega t+\phi_{i}\right) \\ \Leftrightarrow \overrightarrow{I} & =I \angle \phi_{i} \end{aligned}\] Note: \(V\) and \(I\) are in RMS

To calculate \(i(t)\) use differential equation: \[R i(t)+L \frac{d i(t)}{d t}+\frac{1}{C} \int i(t) \cdot d t=\sqrt{2} V \cos (\omega t)\]


Time-domain, Phasor, & Impedance Triangle

image

image

image

\[\begin{aligned} Z & =R+j X_{L}+j X_{c} ~~ =|Z|<\phi \\ X_{L} & =\omega L, ~~ \quad X_{c}=\left(\frac{1}{-\omega C}\right) \\ |Z| & =\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}} & \phi=\tan ^{-1}\left[\frac{\left(\omega L-\frac{1}{\omega C}\right)}{R}\right] \end{aligned}\] \(\checkmark\) Note: \(Z\) is complex but not a phasor, hence does not have time-domain expression


Power and Power Factor

image


Instantaneous Power

image

If \(v(t)\) and \(i(t)\) are in phase, \(p(t)\) pulsates at twice the steady-state \(f\)

\[\begin{aligned} p(t) & =\sqrt{2} V \cos \omega t \cdot \sqrt{2} I \cos \omega t \quad(i \text { in phase } \operatorname{with} v) \\ & = 2 V I \cos ^{2} \omega t=V I+V I \cos 2 \omega t \end{aligned}\] \(\ast\) \(\phi_{v}\) and \(\phi_{i}\) are assumed to be zero without loss of generality

image

Considering \(i(t)\) lags behind \(v(t)\) by \(\phi (t)\)


Powers: Active, Reactive, & Complex

image


Relationship between Power Quantities

\[\begin{aligned} S & =\overrightarrow{V}\overrightarrow{I}^{*} ~ *\rightarrow\text{conjugate}\\ & =V\angle\phi_{v}\cdot I\angle-\phi_{i}\\ & =VI\angle\left(\phi_{v}-\phi_{i}\right)\\ & =VI\angle\phi\\ & =P+jQ \end{aligned}\] where, \[\begin{array}{l} P=V I \cos \phi \\ Q=V I \sin \phi \end{array}\] image \[\begin{array}{l} |S| =\sqrt{P^{2}+Q^{2}} \\ \phi =\tan^{-1}\left(\dfrac{Q}{P}\right) \end{array}\]


Power Factor

\[\begin{aligned} P & =VI\cos\phi\\ \Rightarrow pf = \cos\phi & =\dfrac{P}{VI} =\dfrac{\text{Real Power}}{\text{Apparaent Power}}\\ & =\dfrac{kW}{kVA} =\dfrac{R}{Z} \end{aligned}\] image
image
image


Units and Important Points

\[\begin{aligned} P & \rightarrow W(\text{Watts}); ~~ Q \rightarrow\text{VAR (Volt-Amperes Reactive)} \\ |S| & \rightarrow\text{VA (Volt-Amperes);} \\ \phi_{v},\phi_{i},\phi & \rightarrow\text{radians (+ve anticlockwise w.r.t real axis L to R)} \\ pf \rightarrow & \cos\phi = \text{ dimensionless, value between 0 to 1} \end{aligned}\]


\(P\) and \(Q\) in system

\[\begin{aligned} \text{Total Real Power} & =\sum_{k}P_{k}=\sum_{k}I_{k}^{2}R_{k}\\ \text{Total Reactive Power} & =\sum_{k}Q_{k}=\sum_{k}I_{k}^{2}X_{k} \\ +Q & \rightarrow \text{lagging load (Inductive)} \\ -Q & \rightarrow \text{leading load (Capacitive)} \end{aligned}\]


Importance of \(Q\)- Compensation

image