Ferranti Effect in Transmission Lines

Demonstrative Video


Ferranti effect


Cause of Ferranti Effect


image

Ferranti effect explained by phasor diagram:

image \[\begin{aligned} V_{r} & =V_{r}(1+j 0)\\ I_{c} & =j \omega C V_{r}\\ V_{s} & =V_{r}+\text {resistive drop}+\text {reactive drop}\\ &=V_{r}+I_{c} R+j I_{c} X\\ &=V_{r}+I_{c}(R+j X)\\ &=V_{r}+j \omega C V_{r}(R+j \omega L)~~[\text { since } X=\omega L]\\ V_{s} & =V_{r}-\omega^{2} C L V_{r}+j \omega C R V_{r} \end{aligned}\]

From Phasor diagram \[\begin{aligned} V_{s}^{2}&=\left(V_{r}-I_{c} X_{L}\right)^{2}+\left(I_{c} R\right)^{2} \\ V_{s}&=V_{r}-\omega^{2} L C V_{r} ~~[R~\text{ is negligeble in long TL}]\\ V_{s}&=V_{r}-I_{c} X_{L} \\ V_{r}&=V_{s}+I_{c} X_{L} \end{aligned}\] considering a nominal \(\Pi\)-model of a medium transmission line to explain the Ferranti effect. For the open circuit line, putting \(I_r=0\) \[\begin{array}{c} V_{s}=\left(1+\dfrac{Y Z}{2}\right) V_{r} \\ V_{s}-V_{r}=\dfrac{Y Z}{2} V_{r} \end{array}\]

Substituting the expression of impedance and admittance \[\begin{aligned} V_{s}-V_{r} &=\dfrac{(j \omega C l)(r+j \omega L) l}{2} V_{r} \\ V_{s}-V_{r} &=\dfrac{-\omega^{2} C l^{2}}{2} L V_{r} ~~ [\text{Subs.}~ r=0]\\ V_{s} &=\left(1-\dfrac{\omega^{2} C l^{2}}{2} L\right) V_{r} \end{aligned}\]