Effect of Earth on Transmission Line Capacitance

Demonstrative Video


Effect of earth on the capacitance of a three-phase line

image

image

image

image \[\begin{aligned} \mathrm{v_{ab}}&=\frac{1}{2 \pi \varepsilon}\left[q_{a} \ln \frac{D}{r}+q_{b} \ln \frac{r}{D}\right]+\frac{1}{2 \pi \varepsilon}\left[-q_{a} \ln \frac{H}{2 h}-q_{b} \ln \frac{2 h}{H}\right] \\ \text {but} \quad H& =\sqrt{D^{2}+(2 h)^{2}}=\sqrt{D^{2}+4 h^{2}} \end{aligned}\]

\[\begin{aligned} \therefore v_{a b}& =\frac{1}{2 \pi \varepsilon}\left[q_{a} \ln \frac{D}{r}+q_{b} \ln \frac{r}{D}\right]+ \\ &\frac{1}{2 \pi \varepsilon}\left[-q_{a} \ln \frac{\sqrt{D^{2}+4 h^{2}}}{2 h}-q_{b} \ln \frac{2 h}{\sqrt{D^{2}+4 h^{2}}}\right] \end{aligned}\]

\[\begin{aligned} \mathrm{v_{ab}}&=\frac{1}{2 \pi \varepsilon}\left[q_{a} \ln \frac{2 h D}{r \sqrt{D^{2}+4 h^{2}}}+q_{b} \ln \frac{r \sqrt{D^{2}+4 h^{2}}}{2 h D}\right] \end{aligned}\]

\[\text { but } \quad q_{a}=-q_{b}\]

\[\begin{aligned} \therefore \mathrm{v_{ab}}&=\frac{1}{2 \pi \varepsilon}\left[q_{a} \ln \frac{4 h^{2} D^{2}}{r^{2}\left(D^{2}+4 h^{2}\right)}\right] \\ &=\frac{1}{2 \pi \varepsilon}\left[q_{a} \ln \left(\frac{D}{r \sqrt{1+\left(D^{2} / 4 h^{2}\right)}}\right)^{2}\right]\\ &=\frac{1}{2 \pi \varepsilon}\left[2 q_{a} \ln \frac{D}{r \sqrt{1+\left(D^{2} / 4 h^{2}\right)}}\right] \\ &= \frac{q_{a}}{\pi \varepsilon}\left[\ln \frac{D}{r}+\ln \frac{1}{\sqrt{1+\left(D^{2} / 4 h^{2}\right)}}\right] \quad \text { volts } \end{aligned}\] \[\begin{aligned} \therefore C_{a b}& =\frac{q_{a}}{v_{a b}}\\ &= \frac{D}{r}+\left(\ln \frac{\pi \varepsilon}{\sqrt{1+\left(D^{2} / 4 h^{2}\right)}}\right) \end{aligned}\]

  • Imagine a fictitious conductor (same size and shape) lying directly below the original conductor at the same distance

  • Earth is removed and equal and opposite charge is assumed on the fictitious conductor

    1. plane midway acts as equipotential plane

image