Dynamics of Synchronous Machines in Power Systems

Demonstrative Video


Dynamics of a Synchronous Machine

\(J\) rotor moment of inertia in \(kg-m^{2}\)
\(\omega_{sm}\) synchronous speed in \(rad~(mech)/s\)
\(\omega_{s}=\left(\dfrac{P}{2}\right)\omega_{sm}\) rotor speed in \(rad~(elect)/s\)
\(P\) number of machine poles
\(M\) moment of inertia in \(MJ-s/elec~rad\)
\(G\) machine rating (base) in MVA (3-phase)
\(H\) intertia constant in \(MJ/MVA\)
  • \[\begin{aligned} KE & =\dfrac{1}{2}J\omega_{sm}^{2}\times10^{-6}~\mbox{MJ}\\ & =\dfrac{1}{2}\left[J\left(\dfrac{2}{P}\right)^{2}\omega_{s}\times10^{-6}\right]\omega_{s}\\ & =\dfrac{1}{2}M\omega_{s} \end{aligned}\]
    The kinetic energy of the synchronous machine rotor is given as
  • \[M=J\left(\dfrac{2}{P}\right)^{2}\omega_{s}\times10^{-6}\]
    where
  • \[KE = G\cdot H = \dfrac{1}{2}M\omega_{s}\]
    Also
\[\begin{aligned} M & =\dfrac{2GH}{\omega_{s}}=\dfrac{GH}{\pi f}~\mbox{MJ-s/elect rad}\\ & =\dfrac{GH}{180f}~\mbox{MJ-s/elect degree} \end{aligned}\]
as base Taking