Demonstrative Video
Capacitance calculations for bundled conductors
Conductors of any one bundle are in parallel and the charge per bundle divides equally between the conductors of the bundle
separation between bundles is usually more than 15 times the spacing between the conductors of the bundle
\(D_{12} \ggg d\), Use \(D_{12}\) for \(\left(D_{12} ~ \pm ~ d\right)\)
If charge on phase \(a\) is \(q_a\), conductors \(a\) and \(a^{'}\) has the charge \(q_{a}/2\), and similarly for \(b\) and \(c\)
\[ V_{ab}=\dfrac{1}{2\pi\varepsilon}\left[\dfrac{q_{a}}{2}\left(\begin{array}{c} \underbrace{ln\dfrac{D_{12}}{r}}\\ a \end{array}+\begin{array}{c} \underbrace{ln\dfrac{D_{12}}{d}}\\ a^{'} \end{array}\right)+\dfrac{q_{b}}{2}\left(\begin{array}{c} \underbrace{ln\dfrac{r}{D_{12}}}\\ b \end{array}+\begin{array}{c} \underbrace{ln\dfrac{d}{D_{12}}}\\ b^{'} \end{array}\right)+\dfrac{q_{c}}{2}\left(\begin{array}{c} \underbrace{ln\dfrac{D_{23}}{D_{31}}}\\ c \end{array}+\begin{array}{c} \underbrace{ln\dfrac{D_{23}}{D_{31}}}\\ c^{'} \end{array}\right)\right] \]- \[V_{ab}=\dfrac{1}{2\pi\varepsilon}\left(q_{a}~ln\dfrac{D_{12}}{\sqrt{r\cdot d}}+q_{b}~ln\dfrac{\sqrt{r\cdot d}}{D_{12}}+q_{c}~ln\dfrac{D_{23}}{D_{31}}\right)\]Combining the terms, we get\[\boxed{C_{n}=\dfrac{2\pi\varepsilon}{ln\left(\dfrac{D_{eq}}{\sqrt{r\cdot d}}\right)}~F/m}\]
GMR of Bundled Conductors

For different strands
\[C_{n}=\dfrac{2\pi\varepsilon}{ln\left(\dfrac{D_{eq}}{D_{s}^{b}}\right)}~F/m\]\[D_{s}^{b}=\begin{cases} \sqrt[4]{\left(r\times d\right)^{2}}=\sqrt{r\cdot d} & 2~\mbox{strand}\\ \sqrt[9]{\left(r\times d\times d\right)^{3}}=\sqrt[3]{r\cdot d} & 3~\mbox{strand}\\ \sqrt[16]{\left(r\times d\times d\times d\times\sqrt{2}\right)^{4}}=1.09\sqrt[4]{r\cdot d} & 4~\mbox{strand} \end{cases}\]