Capacitance of Bundled Conductors

Demonstrative Video


Capacitance calculations for bundled conductors

  • Conductors of any one bundle are in parallel and the charge per bundle divides equally between the conductors of the bundle

    image
  • separation between bundles is usually more than 15 times the spacing between the conductors of the bundle

  • \(D_{12} \ggg d\), Use \(D_{12}\) for \(\left(D_{12} ~ \pm ~ d\right)\)

  • If charge on phase \(a\) is \(q_a\), conductors \(a\) and \(a^{'}\) has the charge \(q_{a}/2\), and similarly for \(b\) and \(c\)

    \[ V_{ab}=\dfrac{1}{2\pi\varepsilon}\left[\dfrac{q_{a}}{2}\left(\begin{array}{c} \underbrace{ln\dfrac{D_{12}}{r}}\\ a \end{array}+\begin{array}{c} \underbrace{ln\dfrac{D_{12}}{d}}\\ a^{'} \end{array}\right)+\dfrac{q_{b}}{2}\left(\begin{array}{c} \underbrace{ln\dfrac{r}{D_{12}}}\\ b \end{array}+\begin{array}{c} \underbrace{ln\dfrac{d}{D_{12}}}\\ b^{'} \end{array}\right)+\dfrac{q_{c}}{2}\left(\begin{array}{c} \underbrace{ln\dfrac{D_{23}}{D_{31}}}\\ c \end{array}+\begin{array}{c} \underbrace{ln\dfrac{D_{23}}{D_{31}}}\\ c^{'} \end{array}\right)\right] \]
  • \[V_{ab}=\dfrac{1}{2\pi\varepsilon}\left(q_{a}~ln\dfrac{D_{12}}{\sqrt{r\cdot d}}+q_{b}~ln\dfrac{\sqrt{r\cdot d}}{D_{12}}+q_{c}~ln\dfrac{D_{23}}{D_{31}}\right)\]
    Combining the terms, we get
    \[\boxed{C_{n}=\dfrac{2\pi\varepsilon}{ln\left(\dfrac{D_{eq}}{\sqrt{r\cdot d}}\right)}~F/m}\]

GMR of Bundled Conductors

image
  • For different strands

    \[C_{n}=\dfrac{2\pi\varepsilon}{ln\left(\dfrac{D_{eq}}{D_{s}^{b}}\right)}~F/m\]
    \[D_{s}^{b}=\begin{cases} \sqrt[4]{\left(r\times d\right)^{2}}=\sqrt{r\cdot d} & 2~\mbox{strand}\\ \sqrt[9]{\left(r\times d\times d\right)^{3}}=\sqrt[3]{r\cdot d} & 3~\mbox{strand}\\ \sqrt[16]{\left(r\times d\times d\times d\times\sqrt{2}\right)^{4}}=1.09\sqrt[4]{r\cdot d} & 4~\mbox{strand} \end{cases}\]