Capacitance of Three-Phase Transmission Lines

Demonstrative Video


Capacitance of a three-phase line

Overview of the topic:

image \[\begin{aligned} V_{ab}&=\dfrac{1}{2\pi\varepsilon}\left(q_{a}~ln\dfrac{D}{r}+q_{b}~ln\dfrac{r}{D}+\underset{zero}{\underbrace{q_{c}~ln\dfrac{D}{D}}}\right)~V \\ V_{ac}&=\dfrac{1}{2\pi\varepsilon}\left(q_{a}~ln\dfrac{D}{r}+\underset{zero}{\underbrace{q_{b}~ln\dfrac{D}{D}}}+q_{c}~ln\dfrac{r}{D}\right)~V \end{aligned}\]

\[V_{ab}+V_{ac}=\dfrac{1}{2\pi\varepsilon}\left[2q_{a}~ln\dfrac{D}{r}+\left(q_{b}+q_{c}\right)~ln\dfrac{r}{D}\right]~V\]

Since, \((q_{b}+q_{c})=-q_{a}\) \[V_{ab}+V_{ac}=\dfrac{3q_{a}}{2\pi\varepsilon}ln\dfrac{D}{r}~V\]

\[\begin{aligned} V_{ab} & =\sqrt{3}V_{an}\angle30^{0}\\ &=\sqrt{3}V_{an}\left(0.866+j0.5\right)\\ V_{ac}&=-V_{ca} =\sqrt{3}V_{an}\angle-30^{0}\\ &=\sqrt{3}V_{an}\left(0.866-j0.5\right) \end{aligned}\]

image
Phasor diagram of the balanced voltages of a \(3\phi\) line

Capacitance of a three-phase line with unsymmetrical spacing

image