Bus Impedance Matrix (Zbus) in Power Systems

Demonstrative Video


Bus Impedance Matrix


Formulation of Bus Impedance Matrix


\(Z_{Bus}\) Building Algorithm


Type-1 Modification

\(\checkmark\) Adding \(Z_b\) from new bus-p \(\rightarrow\) reference bus

image \[Z_{\text{bus, new}}=\left[\begin{array}{cccc|c} & & & & 0\\ & Z_{\text{orig}} & & & 0\\ & & & & \vdots\\ & & & & 0\\ \hline 0 & 0 & \cdots & 0 & Z_{b} \end{array}\right]\]


Type-2 Modification

\(\checkmark\) Adding \(Z_b\) from new bus-p \(\rightarrow\) existing bus-q

image \[ Z_{\text{bus, new}}=\left[\begin{array}{cccc|c} & & & & Z_{1q}\\ & Z_{\text{orig}} & & & Z_{2q}\\ & & & & \vdots\\ & & & & Z_{nq}\\ \hline Z_{q1} & Z_{q2} & \cdots & Z_{qn} & Z_{qq}+Z_{b} \end{array}\right] \]


Type-3 Modification

\(\checkmark\) Adding \(Z_b\) from existing bus-q \(\rightarrow\) reference bus

image \[Z_{jk,act}=Z_{jk}-\dfrac{Z_{j\left(n+1\right)}Z_{\left(n+1\right)k}}{Z_{\left(n+1\right)\left(n+1\right)}}\]

  • \(Z_{jk,act}\) corresponding to row-j and column-k of actual new \(Z_{bus}\)

  • \(Z_{jk}\), \(Z_{(n+1)k}\), \(Z_{j(n+1)}\), \(Z_{(n+1)(n+1)}\) impedances of new \(Z_{bus}\) or order \((n+1)\)

  • \(Z_{jk,act} = Z_{kj,act}\)


Type-4 Modification

\(\checkmark\) Adding \(Z_b\) between two existing buses h and q

image

\[ Z_{\text{bus, new}}=\left[\begin{array}{cccc|c} & & & & Z_{1h}-Z_{1q}\\ & Z_{\text{orig}} & & & Z_{2h}-Z_{2q}\\ & & & & \vdots\\ & & & & Z_{nh}-Z_{nq}\\ \hline Z_{h1}-Z_{q1} & Z_{h2}-Z_{q2} & \cdots & Z_{hn}-Z_{qn} & Z_{\left(n+1\right)\left(n+1\right)} \end{array}\right] \] \[Z_{\left(n+1\right)\left(n+1\right)}=Z_{b}+Z_{hh}+Z_{qq}-2Z_{hq}\]

No new bus is involved so reduced the size of matrix to \((n \times n)\) \[\Rightarrow ~ Z_{jk,act}=Z_{jk}-\dfrac{Z_{j\left(n+1\right)}Z_{\left(n+1\right)k}}{Z_{\left(n+1\right)\left(n+1\right)}}\]


\(Z_{Bus}\) Formulation

image


Step-by-Step procedure for \(Z_{Bus}\) formulation

No closed path should be there image

Step-1

image

Step-2

image

Step-3

image

Step-4

image

Step-5

image

Step-6

image

Step-7

image


Modification of the existing \(Z_{Bus}\)

image