Bus Admittance Matrix (Ybus) in Power Systems

Demonstrative Video


Bus Admittance Matrix

\[\mathrm{Y_{bus}}\cdot \mathrm{V} = \mathrm{I}\] where, \[\begin{aligned} \mathrm{Y_{bus}} & = \text{Bus admittance matrix of order}~(n \times n) \\ \mathrm{V} & = \text{Bus voltage matrix of order}~(n\times 1) \\ \mathrm{I} & = \text{Current sources matrix of order}~(n\times 1) \\ \mathrm{n} & = \text{Number of independent buses in the system} \end{aligned}\] In general, \[\begin{aligned} \mathrm{Y_{jj}} & = \text{Sum of all admittances connected to bus-j} \\ \mathrm{Y_{jk}} & = \text{-ve sum of all admittances connected between bus-j and bus-k} \\ \mathrm{Y_{jk}} & = \mathrm{Y_{kj}} \end{aligned}\] Note: If PS represented by reactance diagram, all elements are inductive susceptances (which are -ve). In this case, \(\mathrm{Y_{ij}}\) will be -ve and \(\mathrm{Y_{jk}}\) will be +ve


Formulation of bus admittance matrix

image
image

A simple power system with impedance and admittance diagram

\[\left[\begin{array}{c} I_{1}\\ I_{2}\\ 0\\ 0 \end{array}\right]=Y_{bus}\left[\begin{array}{c} V_{1}\\ V_{2}\\ V_{3}\\ V_{4} \end{array}\right]\Longrightarrow\left[\begin{array}{c} V_{1}\\ V_{2}\\ V_{3}\\ V_{4} \end{array}\right]=Z_{bus}\left[\begin{array}{c} I_{1}\\ I_{2}\\ 0\\ 0 \end{array}\right]\]

Applying KCL at node 1, \[\begin{aligned} I_{1} & =Y_{11}V_{1}+Y_{12}\left(V_{1}-V_{2}\right)+Y_{13}\left(V_{1}-V_{3}\right)\\ & =\left(Y_{11}+Y_{12}+Y_{13}\right)V_{1}-Y_{12}V_{2}-Y_{13}V_{3} \end{aligned}\]

In a similar way application of KCL at nodes 2, 3 and 4 results in the following equations \[\begin{aligned} I_{2} & =Y_{22}V_{2}+Y_{12}\left(V_{2}-V_{1}\right)+Y_{23}\left(V_{2}-V_{3}\right)+Y_{24}\left(V_{2}-V_{4}\right)\\ & =-Y_{12}V_{1}+\left(Y_{22}+Y_{12}+Y_{23}+Y_{24}\right)V_{2}-Y_{23}V_{3}-Y_{24}V_{4} \end{aligned}\]

\[\begin{aligned} 0 & =Y_{13}\left(V_{3}-V_{1}\right)+Y_{23}\left(V_{3}-V_{2}\right)+Y_{34}\left(V_{3}-V_{4}\right)\\ & =-Y_{13}V_{1}-Y_{23}V_{2}+\left(Y_{13}+Y_{23}+Y_{34}\right)V_{3}-Y_{34}V_{4} \end{aligned}\]

\[\begin{aligned} 0 & =Y_{24}\left(V_{4}-V_{2}\right)+Y_{34}\left(V_{4}-V_{3}\right)\\ & =-Y_{24}V_{2}-Y_{34}V_{3}+\left(Y_{24}+Y_{34}\right)V_{4} \end{aligned}\]

On combining \[ \left[\begin{array}{c} I_{1}\\ I_{2}\\ 0\\ 0 \end{array}\right]=\left[\begin{array}{cccc} Y_{11}+Y_{12}+Y_{13} & -Y_{12} & -Y_{13} & 0\\ -Y_{12} & Y_{22}+Y_{12}+Y_{23}+Y_{24} & -Y_{23} & -Y_{24}\\ -Y_{13} & -Y_{23} & Y_{13}+Y_{23}+Y_{34} & -Y_{34}\\ 0 & -Y_{24} & -Y_{34} & Y_{24}+Y_{34} \end{array}\right]\left[\begin{array}{c} V_{1}\\ V_{2}\\ V_{3}\\ V_{4} \end{array}\right] \]

\[ Y_{bus}=\left[\begin{array}{cccc} Y_{1}+Y_{12}+Y_{13} & -Y_{12} & -Y_{13} & 0\\ -Y_{12} & Y_{22}+Y_{12}+Y_{23}+Y_{24} & -Y_{23} & -Y_{24}\\ -Y_{13} & -Y_{23} & Y_{13}+Y_{23}+Y_{34} & -Y_{34}\\ 0 & -Y_{24} & -Y_{34} & Y_{24}+Y_{34} \end{array}\right]=\left[\begin{array}{ccccc} Y_{11} & -Y_{12} & -Y_{13} & \cdots & -Y_{1n}\\ -Y_{12} & Y_{2} & -Y_{23} & \cdots & -Y_{2n}\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ -Y_{1n} & -Y_{2n} & -Y_{3n} & \cdots & Y_{n} \end{array}\right] \]


Inclusion of Line Charging Capacitors

\(\Rightarrow\) We can then modify the admittance matrix as \[ Y_{bus}=\left[\begin{array}{cccc} Y_{1}+Y_{12}+Y_{13}+Y_{ch1} & -Y_{12} & -Y_{13} & 0\\ -Y_{12} & Y_{22}+Y_{12}+Y_{23}+Y_{24}+Y_{ch2} & -Y_{23} & -Y_{24}\\ -Y_{13} & -Y_{23} & Y_{13}+Y_{23}+Y_{34}+Y_{ch3} & -Y_{34}\\ 0 & -Y_{24} & -Y_{34} & Y_{24}+Y_{34}+Y_{ch4} \end{array}\right] \] where \[\begin{aligned} Y_{ch1} & =\dfrac{Y_{ch12}+Y_{ch13}}{2}\\ Y_{ch2} & =\dfrac{Y_{ch12}+Y_{ch23}+Y_{ch24}}{2}\\ Y_{ch3} & =\dfrac{Y_{ch13}+Y_{ch23}+Y_{ch34}}{2}\\ Y_{ch4} & =\dfrac{Y_{ch24}+Y_{ch34}}{2} \end{aligned}\]


Some observation of \(Y_{bus}\) matrix

\[ \left[\begin{array}{c} I_{1}\\ I_{2}\\ I_{3}\\ I_{4} \end{array}\right]=\underset{\mbox{symmetric}}{\underbrace{\left[\begin{array}{cccc} Y_{11} & Y_{12} & Y_{13} & Y_{14}\\ Y_{21} & Y_{22} & Y_{23} & Y_{24}\\ Y_{31} & Y_{32} & Y_{33} & Y_{34}\\ Y_{41} & Y_{42} & Y_{43} & Y_{44} \end{array}\right]}}\left[\begin{array}{c} V_{1}\\ V_{2}\\ V_{3}\\ V_{4} \end{array}\right]\Longrightarrow\left[\begin{array}{c} V_{1}\\ V_{2}\\ V_{3}\\ V_{4} \end{array}\right]=\underset{\mbox{symmetric}}{\underbrace{\left[\begin{array}{cccc} Z_{11} & Z_{12} & Z_{13} & Z_{14}\\ Z_{21} & Z_{22} & Z_{23} & Z_{24}\\ Z_{31} & Z_{32} & Z_{33} & Z_{34}\\ Z_{41} & Z_{42} & Z_{43} & Z_{44} \end{array}\right]}}\left[\begin{array}{c} I_{1}\\ I_{2}\\ I_{3}\\ I_{4} \end{array}\right] \]

NOTE: \(Z_{12}\) is not the reciprocal of \(Y_{12}\)


Node Elimination by Matrix Partitioning

\[\begin{aligned} I_{A} & =KV_{A}+LV_{x}\\ I_{x} & =0=L^{T}V_{A}+MV_{x}\Rightarrow V_{x}=-M^{-1}L^{T}V_{A}\\ \therefore ~I_{A} & =\left(K-LM^{-1}L^{T}\right)V_{A} \end{aligned}\] \[\boxed{Y_{bus}^{reduced}=K-LM^{-1}L^{T}}\]