Bus Admittance Matrix (Ybus) in Power Systems

Demonstrative Video


Bus Admittance Matrix

  • The meeting point of various components in a PS is called Bus.

  • The Bus or Bus bar is a conductor made of copper or aluminium having negligible resistances.

  • Hence the bus bar will have zero voltage drop when it conducts the rated current

  • Buses are considered as points of constant voltage in a PS

  • PS represented by impedance/reactance diagram is considered as a circuit or network.

  • Buses can be treated as nodes and the voltages of all buses (nodes) can be solved by conventional node analysis technique.

\[\mathrm{Y_{bus}}\cdot \mathrm{V} = \mathrm{I}\]
will be +ve will be -ve and Note: If PS represented by reactance diagram, all elements are inductive susceptances (which are -ve). In this case, In general, where,

Formulation of bus admittance matrix

image
  • \[I_{s}=\dfrac{V_{s}}{Z_{s}} ~ \mbox{and} ~ Y_{s}=\dfrac{1}{Z_{s}}\]
    Voltage source with a source impedance and its Norton’s equivalent
image

A simple power system with impedance and admittance diagram

\[\left[\begin{array}{c} I_{1}\\ I_{2}\\ 0\\ 0 \end{array}\right]=Y_{bus}\left[\begin{array}{c} V_{1}\\ V_{2}\\ V_{3}\\ V_{4} \end{array}\right]\Longrightarrow\left[\begin{array}{c} V_{1}\\ V_{2}\\ V_{3}\\ V_{4} \end{array}\right]=Z_{bus}\left[\begin{array}{c} I_{1}\\ I_{2}\\ 0\\ 0 \end{array}\right]\]
\[\begin{aligned} I_{1} & =Y_{11}V_{1}+Y_{12}\left(V_{1}-V_{2}\right)+Y_{13}\left(V_{1}-V_{3}\right)\\ & =\left(Y_{11}+Y_{12}+Y_{13}\right)V_{1}-Y_{12}V_{2}-Y_{13}V_{3} \end{aligned}\]
Applying KCL at node 1,
\[\begin{aligned} I_{2} & =Y_{22}V_{2}+Y_{12}\left(V_{2}-V_{1}\right)+Y_{23}\left(V_{2}-V_{3}\right)+Y_{24}\left(V_{2}-V_{4}\right)\\ & =-Y_{12}V_{1}+\left(Y_{22}+Y_{12}+Y_{23}+Y_{24}\right)V_{2}-Y_{23}V_{3}-Y_{24}V_{4} \end{aligned}\]
In a similar way application of KCL at nodes 2, 3 and 4 results in the following equations
\[\begin{aligned} 0 & =Y_{13}\left(V_{3}-V_{1}\right)+Y_{23}\left(V_{3}-V_{2}\right)+Y_{34}\left(V_{3}-V_{4}\right)\\ & =-Y_{13}V_{1}-Y_{23}V_{2}+\left(Y_{13}+Y_{23}+Y_{34}\right)V_{3}-Y_{34}V_{4} \end{aligned}\]
\[\begin{aligned} 0 & =Y_{24}\left(V_{4}-V_{2}\right)+Y_{34}\left(V_{4}-V_{3}\right)\\ & =-Y_{24}V_{2}-Y_{34}V_{3}+\left(Y_{24}+Y_{34}\right)V_{4} \end{aligned}\]
\[ \left[\begin{array}{c} I_{1}\\ I_{2}\\ 0\\ 0 \end{array}\right]=\left[\begin{array}{cccc} Y_{11}+Y_{12}+Y_{13} & -Y_{12} & -Y_{13} & 0\\ -Y_{12} & Y_{22}+Y_{12}+Y_{23}+Y_{24} & -Y_{23} & -Y_{24}\\ -Y_{13} & -Y_{23} & Y_{13}+Y_{23}+Y_{34} & -Y_{34}\\ 0 & -Y_{24} & -Y_{34} & Y_{24}+Y_{34} \end{array}\right]\left[\begin{array}{c} V_{1}\\ V_{2}\\ V_{3}\\ V_{4} \end{array}\right] \]
On combining
\[ Y_{bus}=\left[\begin{array}{cccc} Y_{1}+Y_{12}+Y_{13} & -Y_{12} & -Y_{13} & 0\\ -Y_{12} & Y_{22}+Y_{12}+Y_{23}+Y_{24} & -Y_{23} & -Y_{24}\\ -Y_{13} & -Y_{23} & Y_{13}+Y_{23}+Y_{34} & -Y_{34}\\ 0 & -Y_{24} & -Y_{34} & Y_{24}+Y_{34} \end{array}\right]=\left[\begin{array}{ccccc} Y_{11} & -Y_{12} & -Y_{13} & \cdots & -Y_{1n}\\ -Y_{12} & Y_{2} & -Y_{23} & \cdots & -Y_{2n}\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ -Y_{1n} & -Y_{2n} & -Y_{3n} & \cdots & Y_{n} \end{array}\right] \]

Inclusion of Line Charging Capacitors

  • Assume all lines are represented by equivalent-\(\pi\) with the shunt admittance between the line \(i\) and \(j\) being denoted by \(Y_{chij}\)

    image

  • Then equivalent admittance at the two end will be \(Y_{chij}/2\)

  • For e.g. shunt capacitance at two ends joining buses \(1\) and \(3\) will be \(Y_{ch13}/2\)

\[ Y_{bus}=\left[\begin{array}{cccc} Y_{1}+Y_{12}+Y_{13}+Y_{ch1} & -Y_{12} & -Y_{13} & 0\\ -Y_{12} & Y_{22}+Y_{12}+Y_{23}+Y_{24}+Y_{ch2} & -Y_{23} & -Y_{24}\\ -Y_{13} & -Y_{23} & Y_{13}+Y_{23}+Y_{34}+Y_{ch3} & -Y_{34}\\ 0 & -Y_{24} & -Y_{34} & Y_{24}+Y_{34}+Y_{ch4} \end{array}\right] \]
where \(\Rightarrow\)

Some observation of \(Y_{bus}\) matrix

  • \(Y_{bus}\) is a sparse matrix

  • Diagonal elements are dominating

  • Off diagonal elements are symmetric

  • The diagonal element of each node is the sum of the admittances connected to it

  • The off diagonal element is negated admittance

\[ \left[\begin{array}{c} I_{1}\\ I_{2}\\ I_{3}\\ I_{4} \end{array}\right]=\underset{\mbox{symmetric}}{\underbrace{\left[\begin{array}{cccc} Y_{11} & Y_{12} & Y_{13} & Y_{14}\\ Y_{21} & Y_{22} & Y_{23} & Y_{24}\\ Y_{31} & Y_{32} & Y_{33} & Y_{34}\\ Y_{41} & Y_{42} & Y_{43} & Y_{44} \end{array}\right]}}\left[\begin{array}{c} V_{1}\\ V_{2}\\ V_{3}\\ V_{4} \end{array}\right]\Longrightarrow\left[\begin{array}{c} V_{1}\\ V_{2}\\ V_{3}\\ V_{4} \end{array}\right]=\underset{\mbox{symmetric}}{\underbrace{\left[\begin{array}{cccc} Z_{11} & Z_{12} & Z_{13} & Z_{14}\\ Z_{21} & Z_{22} & Z_{23} & Z_{24}\\ Z_{31} & Z_{32} & Z_{33} & Z_{34}\\ Z_{41} & Z_{42} & Z_{43} & Z_{44} \end{array}\right]}}\left[\begin{array}{c} I_{1}\\ I_{2}\\ I_{3}\\ I_{4} \end{array}\right] \]
  • \[Y_{11}={\left.\dfrac{I_{1}}{V_{1}}\right|}_{V_{2}=V_{3}=V_{4}=0}\]
    \(Y_{11}\)The self-inductance at bus-1
  • \[Y_{12}={\left.\dfrac{I_{1}}{V_{2}}\right|}_{V_{1}=V_{3}=V_{4}=0}\]
    \(Y_{12}\)For example the mutual admittance between buses 1 and 2 is defined as
  • \[Z_{11}={\left.\dfrac{V_{1}}{I_{1}}\right|}_{I_{2}=I_{3}=I_{4}=0}\]
    Driving point impedance at bus-1
  • \[Z_{12}={\left.\dfrac{V_{1}}{I_{2}}\right|}_{I_{1}=I_{3}=I_{4}=0}\]
    Transfer impedance between buses 1 and 2

NOTE: \(Z_{12}\) is not the reciprocal of \(Y_{12}\)


Node Elimination by Matrix Partitioning

  • Sometimes it is desirable to reduce the network by eliminating the nodes in which the current do not enter or leave.

    \[\left[\begin{array}{c} I_{A}\\ I_{x} \end{array}\right]=\left[\begin{array}{cc} K & L\\ L^{T} & M \end{array}\right]\left[\begin{array}{c} V_{A}\\ V_{x} \end{array}\right]\]
    • \(I_A\) is a vector containing the currents that are injected

    • \(I_x\) is a null vector

    • \(Y_{bus}\) is portioned with matrices \(K,~L,\text{and}~M\)

    • Note \(Y_{bus}\) contains both \(L\) and \(L^T\) due to its symmetric nature

\[\begin{aligned} I_{A} & =KV_{A}+LV_{x}\\ I_{x} & =0=L^{T}V_{A}+MV_{x}\Rightarrow V_{x}=-M^{-1}L^{T}V_{A}\\ \therefore ~I_{A} & =\left(K-LM^{-1}L^{T}\right)V_{A} \end{aligned}\]