Solved Problems on Superposition Theorem

Demonstrative Video


Problem-1

Solution-1

image


Problem-2

Solution-2

\[\begin{gathered} 2=-\frac{v_{x}^{\prime \prime}}{2}-\frac{3}{5} v_{x}^{\prime \prime} \Rightarrow v_{x}^{\prime \prime}=-\frac{20}{11} \\ \therefore i^{\prime \prime}=-\frac{3}{5} \times\left(-\frac{20}{11}\right)=\frac{12}{11} \mathrm{~A} \\ I=\left(i^{\prime}-i^{\prime \prime}\right)=\left(\frac{10}{11}-\frac{12}{11}\right)=-\frac{2}{11} \mathrm{~A} \end{gathered}\]


Problem-3

Solution-3

image


Problem-4

Solution-4

  • When 2-V source acting alone image \[\begin{aligned} I^{\prime} & = 2/12 = 1/6~\mathrm{A} \\ V^{\prime}_{AB} & = I^{\prime} \times 6 = 1~\mathrm{V} \end{aligned}\]


Problem-5

Solution-5

  • When 8-A source is acting alone

image

\[\begin{aligned} \text{KVL in supermesh} \Rightarrow & 3 i^{\prime}+2 i_{1}-4 i^{\prime}=0 \Rightarrow i_{1}=\frac{1}{2} i^{\prime}\\ \text{KCL at node} x \Rightarrow & i_{1}=\left(8+i^{\prime}\right) \Rightarrow \frac{1}{2} i^{\prime}=8+i^{\prime} \Rightarrow i^{\prime}=-16 \mathrm{~A} \\ \therefore ~ & V_{1}^{\prime}=3 i^{\prime}=3 \times(-16)=-48 \mathrm{~V} \end{aligned}\]

  • When 2-A source is acting alone

image
image

\[\begin{aligned} \text{KVL} \Rightarrow & 3\left(i_{2}+2\right)+2 i_{2}-4 i^{\prime \prime}=0 \Rightarrow 5 i_{2}+6-4 i^{\prime \prime}=0 \\ i^{\prime \prime}&=\left(i_{2}+2\right) \\ &\therefore 5 i_{2}+6-4\left(i_{2}+2\right)=0 \Rightarrow i_{2}=2 \mathrm{~A} \\ &\therefore i^{\prime \prime}=\left(i_{2}+2\right)=(2+2)=4 \mathrm{~A} \\ &\therefore V_{1}^{\prime \prime}=3 i^{\prime \prime}=3 \times 4=12 \mathrm{~V} \end{aligned}\]

  • When 10-V source is acting alone

image


Problem-6

Solution-6

  • 4-V source alone

image

\[\begin{aligned} \text{KVL} ~ -4+3 I^{\prime}+5 V_{x}^{\prime}-V_{x}^{\prime} &=0 \\ 3 I^{\prime}+4 \times\left(-2 I^{\prime}\right) &=4 \\ \left[\because V_{x}^{\prime}=-2 I^{\prime}\right] & \end{aligned}\]

  • 2-A source alone

image

\[\begin{aligned} \text {KCL, } & 2=\frac{V_{x}^{\prime \prime}}{2}+\frac{V_{x}^{\prime \prime}-5 V_{x}^{\prime \prime}}{3} \\ & \Rightarrow V_{x}^{\prime \prime}=-\frac{12}{5}=-2.4 \mathrm{~V} \\ \therefore & I^{\prime \prime}=\frac{V_{x}^{\prime \prime}-5 V_{x}^{\prime \prime}}{3} =3.2 \mathrm{~A} \end{aligned}\]