Demonstrative Video
VIDEO
Problem-1
Z = 6 + 4 ‖ ( − j 2 ) = 6 + − j 2 × 4 4 − j 2 = 6.8 − j 1.6 = 7 ∠ − 13.24 ∘ Ω Z = 6 + 4 ∥ ( − j 2 ) = 6 + − j 2 × 4 4 − j 2 = 6.8 − j 1.6 = 7 ∠ − 13.24 ∘ Ω
I r m s = V r m s Z = 30 ∠ 0 ∘ 7 ∠ − 13.24 ∘ = 4.286 ∠ 13.24 ∘ A I r m s = V r m s Z = 30 ∠ 0 ∘ 7 ∠ − 13.24 ∘ = 4.286 ∠ 13.24 ∘ A
p f = cos ( − 13.24 ) = 0.9734 (leading) p f = cos ( − 13.24 ) = 0.9734 (leading)
The total impedance is
P = V r m s ⋅ I r m s ⋅ p f = ( 30 ) ( 4.286 ) 0.9734 = 125 W P = V r m s ⋅ I r m s ⋅ p f = ( 30 ) ( 4.286 ) 0.9734 = 125 W
Z Z R R P = I 2 r m s R = ( 4.286 ) 2 ( 6.8 ) = 125 W P = I 2 r m s R = ( 4.286 ) 2 ( 6.8 ) = 125 W
The average power supplied by the source is
Problem-2
The voltage across a load is v ( t ) = 60 cos ( ω t − 10 ∘ ) V v ( t ) = 60 cos ( ω t − 10 ∘ ) V and the current
through the element in the direction of the voltage drop is i ( t ) = 1.5 cos ( ω t + 50 ∘ ) i ( t ) = 1.5 cos ( ω t + 50 ∘ ) A. Find:
the complex and apparent powers,
the real and reactive powers,
the power factor and the load impedance.
RMS Quantities V r m s = 60 √ 2 ∠ − 10 ∘ , I r m s = 1.5 √ 2 ∠ + 50 ∘ Complex power S = V rms I ∗ rms = ( 60 √ 2 ∠ − 10 ∘ ) ( 1.5 √ 2 ∠ − 50 ∘ ) = 45 ∠ − 60 ∘ V A Apparent power S = | S | = 45 V A Rectangular form S = 45 ∠ − 60 ∘ = 45 [ cos ( − 60 ∘ ) + j sin ( − 60 ∘ ) ] = 22.5 − j 38.97 = P + j Q ⇒ P = 22.5 W ⇒ Q = − 38.97 V A R ( -ve capacitive ) Power factor p f = cos ( − 60 ∘ ) = 0.5 ( leading ) Load impedance Z = V I = 60 ∠ − 10 ∘ 1.5 ∠ + 50 ∘ = 40 ∠ − 60 ∘ Ω RMS Quantities V r m s = 60 √ 2 ∠ − 10 ∘ , I r m s = 1.5 √ 2 ∠ + 50 ∘ Complex power S = V rms I ∗ rms = ( 60 √ 2 ∠ − 10 ∘ ) ( 1.5 √ 2 ∠ − 50 ∘ ) = 45 ∠ − 60 ∘ V A Apparent power S = | S | = 45 V A Rectangular form S = 45 ∠ − 60 ∘ = 45 [ cos ( − 60 ∘ ) + j sin ( − 60 ∘ ) ] = 22.5 − j 38.97 = P + j Q ⇒ P = 22.5 W ⇒ Q = − 38.97 V A R ( -ve capacitive ) Power factor p f = cos ( − 60 ∘ ) = 0.5 ( leading ) Load impedance Z = V I = 60 ∠ − 10 ∘ 1.5 ∠ + 50 ∘ = 40 ∠ − 60 ∘ Ω
v ( t ) = 60 cos ( ω t − 10 ∘ ) V i ( t ) = 1.5 cos ( ω t + 50 ∘ ) v ( t ) = 60 cos ( ω t − 10 ∘ ) V i ( t ) = 1.5 cos ( ω t + 50 ∘ )
Problem-3
A load Z Z draws 12 k V A 12 k V A at a power factor of
0.856 lagging from a 120 V 120 V rms
sinusoidal source.
Calculate:
the average and reactive powers delivered to the load
the peak current
the load impedance.
p f = cos θ = 0.856 ( Given ) ⇒ θ = 31.13 ∘ S = 12000 VA ( Given ) ⇒ P = S cos θ = 12000 × 0.856 = 10.272 k W ⇒ Q = S sin θ = 12000 × 0.517 = 6.204 k V A S = P + j Q = 10.272 + j 6.204 I ∗ r m s = S V r m s = 10.272 + j 6.204 120 ∠ 0 ∘ = 100 ∠ 31.13 ∘ A I m = √ 2 I r m s = √ 2 × 100 = 141.4 A Z = V r m s I r m s = 120 ∠ 0 ∘ 100 ∠ − 31.13 ∘ = 1.2 ∠ 31.13 ∘ Ω p f = cos θ = 0.856 ( Given ) ⇒ θ = 31.13 ∘ S = 12000 VA ( Given ) ⇒ P = S cos θ = 12000 × 0.856 = 10.272 k W ⇒ Q = S sin θ = 12000 × 0.517 = 6.204 k V A S = P + j Q = 10.272 + j 6.204 I ∗ r m s = S V r m s = 10.272 + j 6.204 120 ∠ 0 ∘ = 100 ∠ 31.13 ∘ A I m = √ 2 I r m s = √ 2 × 100 = 141.4 A Z = V r m s I r m s = 120 ∠ 0 ∘ 100 ∠ − 31.13 ∘ = 1.2 ∠ 31.13 ∘ Ω
Problem-4
Conservation of AC Power:
S = P cos θ = P p f = 20 , 000 0.8 = 25 , 000 V A S L = 25 , 000 ∠ 36.87 ∘ = 20 , 000 + j 15 , 000 V A I L = [ S L V L ] ∗ = [ 25 , 000 ∠ 36.87 ∘ 220 ∠ 0 ∘ ] ∗ = 113.64 ∠ − 36.87 ∘ A r m s
S line = I 2 L Z line = ( 113.64 ) 2 ( 0.09 + j 0.3 ) = 1162.26 + j 3874.21 V A S S = S L + S line = 21 , 162.26 + j 18 , 874.21 = 28 , 356.25 ∠ 41.73 ∘ V A V S = | S S | I L = 28 , 356.25 113.64 = 249.53 V r m s p f cos ( 41.73 ∘ ) = 0.75 lagging
I L = 113.64 ∠ − 36.87 ∘ A r m s V line = ( 113.64 ∠ − 36.87 ∘ ) ( 0.09 + j 0.3 ) = 35.59 ∠ 36.43 ∘ V r m s V S = 220 ∠ 0 ∘ + 35.59 ∠ 36.43 ∘ = 249.53 ∠ 4.86 ∘ V r m s θ v − θ i = 4.86 ∘ − ( − 36.87 ∘ ) = 41.73 ∘ p f = cos ( 41.73 ∘ ) = 0.75 lagging
Alternative method using KVL:
S = V r m s ⋅ I r m s = 120 √ 2 4 √ 2 = 240 V A p f = cos ( θ v − θ i ) = cos ( − 20 ∘ − 10 ∘ ) = 0.866 (leading) Alternatively Z = V I = 120 ∠ − 20 ∘ 4 ∠ 10 ∘ = 30 ∠ − 30 ∘ = 25.98 − j 15 Ω = R − j X c ⇒ R = 25.98 Ω p f = cos ( − 30 ∘ ) = 0.866 (leading) X C = − 15 = − 1 ω C ⇒ C = 1 15 ω = 1 15 × 100 π = 212.2 μ F
Given data:
I = I 1 + I 2 + I 3 = 240 80 − j 50 + 240 120 + j 70 + 240 60 + j 0 = ( 7.644 + j 0.4776 ) A I ∗ = ( 7.644 − j 0.4776 ) A S = V I ∗ = 240 [ 7.644 − j 0.4776 ] = ( 1.8345 − j 0.1146 ) k V A
Problem-7
Maximum Power Transfer Theorem:
Z T h = ( 40 − j 30 ) ‖ j 20 = j 20 ( 40 − j 30 ) j 20 + 40 − j 30 = 9.412 + j 22.35 Ω V T h = j 20 j 20 + 40 − j 30 ( 150 ∠ 30 ∘ ) = 72.76 ∠ 134 ∘ V R L = | Z T h | = √ 9.412 2 + 22.35 2 = 24.25 Ω I = V T h Z T h + R L = 72.76 ∠ 134 ∘ 33.66 + j 22.35 = 1.8 ∠ 100.42 ∘ A P max = 1 2 | I | 2 R L = 1 2 ( 1.8 ) 2 ( 24.25 ) = 39.29 W
Problem-8
Given : Z 1 = 60 ∠ − 30 ∘ Ω and Z 2 = 40 ∠ 45 ∘ Ω . Calculate the total: (a) apparent
power, (b) real power, (c) reactive power, and (d) pf, supplied by the
source and seen by the source
I 1 = V Z 1 = 120 ∠ 10 ∘ 60 ∠ − 30 ∘ = 2 ∠ 40 ∘ A r m s I 2 = V Z 2 = 120 ∠ 10 ∘ 40 ∠ 45 ∘ = 3 ∠ − 35 ∘ A r m s S 1 = V 2 r m s Z ∗ 1 = ( 120 ) 2 60 ∠ 30 ∘ = 240 ∠ − 30 ∘ = 207.85 − j 120 V A S 2 = V 2 r m s Z ∗ 2 = ( 120 ) 2 40 ∠ − 45 ∘ = 360 ∠ 45 ∘ = 254.6 + j 254.6 V A
S t = S 1 + S 2 = 462.4 + j 134.6 V A | S t | = √ 462.4 2 + 134.6 2 = 481.6 V A P t = Re ( S t ) = 462.4 W or P t = P 1 + P 2 . Q t = Im ( S t ) = 134.6 V A R or Q t = Q 1 + Q 2 p f = P t / | S t | = 462.4 / 481.6 = 0.96 ( lagging )