Solved Problems on Single-Phase AC Power

Demonstrative Video


Problem-1

  • Determine the power factor of the circuit as seen by the source.

  • Calculate the average power delivered by the source.

image
Z=6+4(j2)=6+j2×44j2=6.8j1.6=713.24ΩZ=6+4(j2)=6+j2×44j2=6.8j1.6=713.24Ω
Irms=VrmsZ=300713.24=4.28613.24AIrms=VrmsZ=300713.24=4.28613.24A
pf=cos(13.24)=0.9734 (leading) pf=cos(13.24)=0.9734 (leading) 
The total impedance is
P=VrmsIrmspf=(30)(4.286)0.9734=125 WP=VrmsIrmspf=(30)(4.286)0.9734=125 W
ZZRR
P=I2rmsR=(4.286)2(6.8)=125 WP=I2rmsR=(4.286)2(6.8)=125 W
The average power supplied by the source is

Problem-2

The voltage across a load is v(t)=60cos(ωt10)Vv(t)=60cos(ωt10)V and the current through the element in the direction of the voltage drop is i(t)=1.5cos(ωt+50)i(t)=1.5cos(ωt+50) A. Find:

  1. the complex and apparent powers,

  2. the real and reactive powers,

  3. the power factor and the load impedance.

RMS Quantities Vrms=60210,Irms=1.52+50Complex power S=Vrms Irms =(60210)(1.5250)=4560VAApparent power S=|S|=45VARectangular form S=4560=45[cos(60)+jsin(60)]=22.5j38.97=P+jQ P=22.5 W Q=38.97 VAR (-ve capacitive)Power factor pf=cos(60)=0.5 (leading)Load impedance Z=VI=60101.5+50=4060 ΩRMS Quantities Vrms=60210,Irms=1.52+50Complex power S=Vrms Irms =(60210)(1.5250)=4560VAApparent power S=|S|=45VARectangular form S=4560=45[cos(60)+jsin(60)]=22.5j38.97=P+jQ P=22.5 W Q=38.97 VAR (-ve capacitive)Power factor pf=cos(60)=0.5 (leading)Load impedance Z=VI=60101.5+50=4060 Ω
v(t)=60cos(ωt10)V    i(t)=1.5cos(ωt+50)v(t)=60cos(ωt10)V    i(t)=1.5cos(ωt+50)

Problem-3

A load ZZ draws 12 kVA12 kVA at a power factor of 0.856 lagging from a 120 V120 V rms sinusoidal source.
Calculate:

  1. the average and reactive powers delivered to the load

  2. the peak current

  3. the load impedance.

pf=cosθ=0.856 (Given)θ=31.13S=12000 VA (Given)P=Scosθ=12000×0.856=10.272 kWQ=Ssinθ=12000×0.517=6.204 kVAS=P+jQ=10.272+j6.204Irms=SVrms=10.272+j6.2041200=10031.13 AIm=2Irms=2×100=141.4 AZ=VrmsIrms=120010031.13=1.231.13 Ωpf=cosθ=0.856 (Given)θ=31.13S=12000 VA (Given)P=Scosθ=12000×0.856=10.272 kWQ=Ssinθ=12000×0.517=6.204 kVAS=P+jQ=10.272+j6.204Irms=SVrms=10.272+j6.2041200=10031.13 AIm=2Irms=2×100=141.4 AZ=VrmsIrms=120010031.13=1.231.13 Ω

Problem-4

Conservation of AC Power:

  • A load operates at 20 kW, 0.8 pf lagging. The load voltage is 2200 V rms at 60 Hz. The impedance of the line is 0.09+j0.3 Ω. Determine the voltage and power factor at the input to the line.

image
S=Pcosθ=Ppf=20,0000.8=25,000 VASL=25,00036.87=20,000+j15,000 VAIL=[SLVL]=[25,00036.872200]=113.6436.87 Arms
Sline =I2LZline =(113.64)2(0.09+j0.3)=1162.26+j3874.21VASS=SL+Sline =21,162.26+j18,874.21=28,356.2541.73VAVS=|SS|IL=28,356.25113.64=249.53 Vrmspf cos(41.73)=0.75 lagging 
IL=113.6436.87ArmsVline =(113.6436.87)(0.09+j0.3)=35.5936.43VrmsVS=2200+35.5936.43=249.534.86Vrmsθvθi=4.86(36.87)=41.73pf=cos(41.73)=0.75 lagging 
Alternative method using KVL:

Problem-5

  • A series-connected load draws a current i(t)=4cos(100πt+10)A when the applied voltage is v(t)=120cos(100πt20)V.

    1. Find the apparent power and the power factor of the load.

    2. Determine the element values that form the series-connected load.

S=VrmsIrms=120242=240VApf=cos(θvθi)=cos(2010)=0.866 (leading) AlternativelyZ=VI=12020410=3030=25.98j15 Ω=RjXc R=25.98 Ωpf=cos(30)=0.866 (leading) XC=15=1ωC C=115ω=115×100π=212.2μF
Given data:

Problem-6

  • Find the total complex power and the input power factor?

image
I=I1+I2+I3=24080j50+240120+j70+24060+j0=(7.644+j0.4776)AI=(7.644j0.4776)AS=VI=240[7.644j0.4776]=(1.8345j0.1146) kVA

Problem-7

Maximum Power Transfer Theorem:

  • Find the value of RL that will absorb the maximum average power? Calculate that power.

image
ZTh=(40j30)j20=j20(40j30)j20+40j30=9.412+j22.35ΩVTh=j20j20+40j30(15030)=72.76134VRL=|ZTh|=9.4122+22.352=24.25ΩI=VThZTh+RL=72.7613433.66+j22.35=1.8100.42APmax=12|I|2RL=12(1.8)2(24.25)=39.29 W

Problem-8

  • Given : Z1=6030 Ω and Z2=4045 Ω. Calculate the total: (a) apparent power, (b) real power, (c) reactive power, and (d) pf, supplied by the source and seen by the source

image
I1=VZ1=120106030=240ArmsI2=VZ2=120104045=335ArmsS1=V2rmsZ1=(120)26030=24030=207.85j120VAS2=V2rmsZ2=(120)24045=36045=254.6+j254.6VA
St=S1+S2=462.4+j134.6VA|St|=462.42+134.62=481.6VAPt=Re(St)=462.4 W or Pt=P1+P2.Qt=Im(St)=134.6VAR or Qt=Q1+Q2pf=Pt/|St|=462.4/481.6=0.96( lagging )