Solved Problems on Second-Order Circuits

Demonstrative Video


Second-Order Circuits


Response Cases

  1. Overdamped Case \(\left(\alpha>\omega_{0}\right)\) when \(L>4 R^{2} C\)

    • The roots of the characteristic equation are real and negative

    • The response is \[\boxed{v(t)=A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t}}\]

  2. Critically Damped Case \(\left(\alpha=\omega_{0}\right)\) when \(L=4 R^{2} C\)

    • The roots are real and equal

    • Response: \[\boxed{v(t)=\left(A_{1}+A_{2} t\right) e^{-\alpha t}}\]

  3. Underdamped Case \(\left(\alpha<\omega_{0}\right)\) when \(L<4 R^{2} C\)

    • Roots are complex and may be expressed as \[s_{1,2}=-\alpha \pm j \omega_{d} \quad \left( \omega_{d}=\sqrt{\omega_{0}^{2}-\alpha^{2}}\right)\]

    • Response \[\boxed{v(t)=e^{-\alpha t}\left(A_{1} \cos \omega_{d} t+A_{2} \sin \omega_{d} t\right)}\]

    • \(A_1\) and \(A_2\) are found from initial conditions \(v(0)\) and \(dv(0)/dt\)

Unit Step-function

image \[\begin{gathered} u(t)= \begin{cases}0, & t<0 \\ 1, & t>0\end{cases} \\ u\left(t-t_{0}\right)= \begin{cases}0, & t<t_{0} \\ 1, & t>t_{0}\end{cases} \\ u\left(t+t_{0}\right)= \begin{cases}0, & t<-t_{0} \\ 1, & t>-t_{0}\end{cases} \end{gathered}\]

Problem-1

image

Solution-1


Problem-2

image

Solution-2

image \[\begin{aligned} i(0^{-}) & = 0 \quad v(0^{-})&=-2\times 6 = -12~\mathrm{V} \end{aligned}\]

For \(\mathrm{t}>0\), we have a series \(\mathrm{RLC}\) circuit with a step input. \[\begin{gathered} \alpha=\mathrm{R} /(2 \mathrm{~L})=6 / 2=3, \omega_{\mathrm{o}}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{0.04} \\ \mathrm{~s}=-3 \pm \sqrt{9-25}=-3 \pm \mathrm{j} 4 \end{gathered}\]

Thus, \(\mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{f}}+\left[(A \cos 4 \mathrm{t}+\mathrm{B} \sin 4 \mathrm{t}) \mathrm{e}^{-3 \mathrm{t}}\right]\) where \(\mathrm{V}_{\mathrm{f}}=\) final capacitor voltage \(=50 \mathrm{~V}\) \[\begin{gathered} \mathrm{v}(\mathrm{t})=50+\left[(A \cos 4 \mathrm{t}+B \sin 4 \mathrm{t}) \mathrm{e}^{-3 \mathrm{t}}\right] \\ \mathrm{v}(0)=-12=50+A \Rightarrow A=-62 \\ \mathrm{i}(0)=0=\operatorname{Cdv}(0) / \mathrm{dt} \end{gathered}\] \[\begin{aligned} \mathrm{dv} / \mathrm{dt}=&\left[-3(\mathrm{~A} \cos 4 \mathrm{t}+\mathrm{B} \sin 4 \mathrm{t}) \mathrm{e}^{-3 \mathrm{t}}\right]+\left[4(-\mathrm{A} \sin 4 \mathrm{t}+\mathrm{B} \cos 4 \mathrm{t}) \mathrm{e}^{-3 \mathrm{t}}\right] \\ 0=& \mathrm{dv}(0) / \mathrm{dt}=-3 \mathrm{~A}+4 \mathrm{~B} \text { or } \mathrm{B}=(3 / 4) \mathrm{A}=-46.5 \\ & \mathrm{v}(\mathrm{t})=\left\{\mathbf{5 0}+\left[(-\mathbf{6 2} \cos 4 \mathrm{t}-\mathbf{4 6 . 5} \sin 4 \mathrm{t}) \mathrm{e}^{-3 \mathrm{t}}\right]\right\} \mathbf{V} \end{aligned}\]


Problem-3

image

Solution-3

Convert current to voltage source image \[\begin{aligned} i(0)&=30/15 = 2~\mathrm{A}\\ v(0)&=5\times 30/15 = 10~\mathrm{V} \end{aligned}\] image \[\begin{aligned} t>0 & \Rightarrow \text{series RLC}\\ \alpha & = -R/(2L) = -2.5 \\ \omega_0 & = 1/\sqrt{LC}= 0.5\\ \alpha & > \omega_0 \Leftarrow \text{{\textcolor{magenta}{overdamped}}} \end{aligned}\]

\[\begin{aligned} &\mathrm{s}_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{\mathrm{o}}^{2}}=-2.5 \pm \sqrt{6.25-0.25}=-4.95,-0.0505 \\ &\mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{s}}+\left[\mathrm{A}_{1} \mathrm{e}^{-4.95 \mathrm{t}}+\mathrm{A}_{2} \mathrm{e}^{-0.0505 \mathrm{t}}\right], \quad \mathrm{V}_{\mathrm{s}}=20 \\ &\mathrm{v}(0)=10=20+\mathrm{A}_{1}+\mathrm{A}_{2} \Rightarrow \mathrm{A}_{2}=-10-\mathrm{A}_{1} \cdots (1) \\ &\mathrm{i}(0)=\mathrm{Cdv}(0) / \mathrm{dt} \text { or } \mathrm{dv}(0) / \mathrm{dt}=2 / 4=1 / 2 \\ & \quad 0.5=-4.95 \mathrm{~A}_{1}-0.0505 \mathrm{~A}_{2} \cdots (2) \\ &\text { From (1) and (2), }\\ &0.5=-4.95 \mathrm{~A}_{1}+0.505\left(10+\mathrm{A}_{1}\right) \text { or } \\ &-4.445 \mathrm{~A}_{1}=-0.005 \\ &\mathrm{~A}_{1}=0.001125, \mathrm{~A}_{2}=-10.001 \\ &\mathrm{v}(\mathrm{t})=\left[\underline{\mathbf{2 0}}+\mathbf{0 . 0 0 1 1 2 5} \mathrm{e}^{-4.95 \mathrm{t}}-\mathbf{1 0 . 0 0 1} \mathrm{e}^{-0.05 \mathrm{t}}\right] \mathbf{V} \end{aligned}\]


Problem-4

image

Solution-4

image

\[\begin{aligned} & \text{At}~t=0^{-} \\ &18 \mathrm{i}_{2}-6 \mathrm{i}_{1}=0 \text { or } \mathrm{i}_{1}=3 \mathrm{i}_{2}~\cdots (1) \\ &-30+6\left(\mathrm{i}_{1}-\mathrm{i}_{2}\right)+10=0 \text { or } \mathrm{i}_{1}-\mathrm{i}_{2}=10 / 3~ \cdots (2) \end{aligned}\] From (1) and (2). \[\begin{gathered} \mathrm{i}_{1}=5, \quad \mathrm{i}_{2}=5 / 3 \\ \mathrm{i}(0)=\mathrm{i}_{1}=5 \mathrm{~A} \\ -10-6 \mathrm{i}_{2}+\mathrm{v}(0)=0 \\ \mathrm{v}(0)=10+6 \times 5 / 3=20 \end{gathered}\]

For \(\mathrm{t}>0\), we have a series \(\mathrm{RLC}\) circuit. \[\begin{gathered} \mathrm{R}=6 \| 12=4 \\ \omega_{\mathrm{o}}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{(1 / 2)(1 / 8)}=4 \\ \alpha=\mathrm{R} /(2 \mathrm{~L})=(4) /(2 \mathrm{x}(1 / 2))=4 \\ \alpha=\omega_{\mathrm{o}}, \text { therefore the {\textcolor{magenta}{circuit is critically damped }}}\\ \mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{s}}+\left[(\mathrm{A}+\mathrm{Bt}) \mathrm{e}^{-4 \mathrm{t}}\right], \text { and } \mathrm{V}_{\mathrm{s}}=10 \\ \mathrm{v}(0)=20=10+\mathrm{A}, \text { or } \mathrm{A}=10 \\ \mathrm{i}_{\mathrm{C}}=\mathrm{Cdv} / \mathrm{dt}=\mathrm{C}\left[-4(10+\mathrm{Bt}) \mathrm{e}^{-4 \mathrm{t}}\right]+\mathrm{C}\left[(\mathrm{B}) \mathrm{e}^{-4 \mathrm{t}}\right] \end{gathered}\]

image

\(\mathrm{i}_{\mathrm{C}}(0)=-5=\mathrm{C}(-40+\mathrm{B})\) which leads to \(-40=-40+\mathrm{B}\) or \(\mathrm{B}=0\) \[\begin{aligned} \mathrm{i}_{\mathrm{C}}=\mathrm{Cdv} / \mathrm{dt}=&(1 / 8)\left[-4(10+0 \mathrm{t}) \mathrm{e}^{-4 \mathrm{t}}\right]+(1 / 8)\left[(0) \mathrm{e}^{-4 \mathrm{t}}\right] \\ & \mathrm{i}_{\mathrm{C}}(\mathrm{t})=\left[-(1 / 2)(10) \mathrm{e}^{-4 \mathrm{t}}\right] \\ & \mathrm{i}(\mathrm{t})=-\mathrm{i}_{\mathrm{C}}(\mathrm{t}) = \mathbf{5} \mathrm{e}^{-4 \mathrm{t}} \mathbf{A} \end{aligned}\]


Problem-5

image

Solution-5

image

At \(t=0^{-}, \quad v_{c}(0)=0\) and \(i_{L}(0)=i(0)=(6 /(6+2)) 4=3 A\) \[\begin{aligned} \omega_{\mathrm{o}}&=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{2 \times 0.02}=5\\ \alpha&=\mathrm{R} /(2 \mathrm{~L})=(6+14) /(2 \times 2)=5 \end{aligned}\]

Since \(\alpha=\omega_{\mathrm{o}}\), critically damped response

\[\begin{gathered} \mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{s}}+\left[(\mathrm{A}+\mathrm{Bt}) \mathrm{e}^{-5 \mathrm{t}}\right], \quad \mathrm{V}_{\mathrm{s}}=24-12=12 \mathrm{~V} \\ \mathrm{v}(0)=0=12+\mathrm{A} \text { or } \mathrm{A}=-12 \\ \mathrm{i}=\mathrm{Cdv} / \mathrm{dt}=\mathrm{C}\left\{\left[\mathrm{Be}^{-5 \mathrm{t}}\right]+\left[-5(\mathrm{~A}+\mathrm{B} \mathrm{t}) \mathrm{e}^{-5 \mathrm{t}}\right]\right\} \\ \mathrm{i}(0)=3=\mathrm{C}[-5 \mathrm{~A}+\mathrm{B}]=0.02[60+\mathrm{B}] \text { or } \mathrm{B}=90 \\ \text { Thus, } \mathrm{i}(\mathrm{t})=0.02\left\{\left[90 \mathrm{e}^{-5 \mathrm{t}}\right]+\left[-5(-12+90 \mathrm{t}) \mathrm{e}^{-5 \mathrm{t}}\right]\right\} \\ \left.\mathrm{i}(\mathrm{t})=\{\mathbf{3}-9 \mathrm{t}) \mathrm{e}^{-5 \mathrm{t}}\right\} \mathbf{A} \end{gathered}\]


Problem-6

image

Solution-6

  • For \(t=0^{-} \Rightarrow i(0)=-6 /(1+2)=-2\) and \(v(0)=2 \times 1=2\)

Thus, \[\begin{aligned} \mathrm{i}(\mathrm{t})=&\left[(\mathrm{A}+\mathrm{Bt}) \mathrm{e}^{-2 \mathrm{t}}\right], \quad \mathrm{i}(0)=-2=\mathrm{A} \\ \mathrm{v}=& \text { Ldi} / \mathrm{dt}=\left[\mathrm{Be}^{-2 \mathrm{t}}\right]+\left[-2(-2+\mathrm{B} \mathrm{t}) \mathrm{e}^{-2 \mathrm{t}}\right] \\ & \mathrm{v}_{\mathrm{o}}(0)=2=\mathrm{B}+4 \text { or } \mathrm{B}=-2 \\ & \text { Thus, } \mathrm{i}(\mathrm{t})=\left[(-2-2 \mathrm{t}) \mathrm{e}^{-2 \mathrm{t}}\right] \mathbf{A} \\ \text { and } \mathrm{v}(\mathrm{t})=&\left[(2+4 \mathrm{t}) \mathrm{e}^{-2 \mathrm{t}}\right] \mathbf{V} \end{aligned}\]


Problem-7

image

Solution-7

image

\[\begin{aligned} \mathrm{i}(\mathrm{t}) &=\mathrm{I}_{\mathrm{s}}+\left[(\mathrm{A} \cos 5,000 \mathrm{t}+\mathrm{B} \sin 5,000 \mathrm{t}) \mathrm{e}^{-50 \mathrm{t}}\right], \quad \mathrm{I}_{\mathrm{s}}=6 \mathrm{~mA} \\ \mathrm{i}(0) &=0=6+\mathrm{A} \\ & \text { or } \mathrm{A}=-6 \mathrm{~m} \mathrm{~A} \\ \mathrm{v}(0) &=0=\mathrm{Ldi}(0) / \mathrm{dt} \\ \mathrm{di} / \mathrm{dt} &=\left[5,000(-\mathrm{A} \sin 5,000 \mathrm{t}+\mathrm{B} \cos 5,000 \mathrm{t}) \mathrm{e}^{-50 \mathrm{t}}\right]+\\ &\left[-50(\mathrm{~A} \cos 5,000 \mathrm{t}+\mathrm{B} \sin 5,000 \mathrm{t}) \mathrm{e}^{-50 \mathrm{t}}\right] \\ \mathrm{di}(0) / \mathrm{dt} &=0=5,000 \mathrm{~B}-50 \mathrm{~A} \\ & \text { or } \mathrm{B}=0.01(-6)=-0.06 \mathrm{~mA} \\ \mathrm{i}(\mathrm{t}) &=\mathbf{6}-[\mathbf{6} \cos \mathbf{5}, \mathbf{0 0 0 t}+\mathbf{0 . 0 6 s i n 5}, \mathbf{0 0 0 t}) \mathrm{e}^{-50 \mathrm{t}} \mathbf{m A} \end{aligned}\]


Problem-8

image

Solution-8


Problem-9

image

Solution-9

image

\[\begin{aligned} t<0 & \Rightarrow i(0)=0,\quad v(0)=0 \end{aligned}\]


Problem-10

image

Solution-10

image \[\begin{aligned} & -v(0)+20 i(0)+v_{L}(0)=0 \\ & -16+20 \times 2+v_{\mathrm{L}}(0)=0 \\ & v_{\mathrm{L}}(0)=-24\\ & \operatorname{Ldi}(0) / \mathrm{dt}=\mathrm{v}_{\mathrm{L}}(0) \\ & \operatorname{di}(0) / \mathrm{dt}=\mathrm{v}_{\mathrm{L}}(0) / \mathrm{L}=-24 \mathrm{~A} / \mathrm{s}\\ &-24=-2 \mathrm{~A}-18 \mathrm{~B}\\ & 12=\mathrm{A}+9 \mathrm{~B} \cdots (2) \end{aligned}\]

From (1) and (2), \(\mathrm{B}=1.25\) and \(\mathrm{A}=0.75\) \[\begin{aligned} \mathrm{i}(\mathrm{t})&=\left[0.75 \mathrm{e}^{-2 \mathrm{t}}+1.25 \mathrm{e}^{-18 \mathrm{t}}\right]=-\mathrm{i}_{\mathrm{x}}(\mathrm{t}) \\ \mathrm{i}_{\mathrm{x}}(\mathrm{t})&=(-\mathbf{0 . 7 5} \mathrm{e}^{-2 \mathrm{t}}-\mathbf{1 . 2 5} \mathrm{e}^{-18 \mathrm{t}})~ \mathrm{A} \\ \mathrm{v}(\mathrm{t})&=8 \mathrm{i}(\mathrm{t})=\underline{\mathbf{6}^{-2 \mathrm{t}}+\mathbf{1 0} \mathrm{e}^{-18 \mathrm{t}}} \underline{\mathbf{A}} \end{aligned}\]