Demonstrative Video
Problem-1
Find the total power absorbed?

Problem-2
The two-wattmeter method produces readings \(P_1 = 1560~\mathrm{W}\) and \(P_2 = 2100~\mathrm{W}\) and when connected to a delta-connected load. If the line voltage is 220 V, calculate:
the per-phase average power,
the per-phase reactive power,
the power factor, and
the phase impedance.
Problem-3
The three-phase balanced load has impedance per phase of \(\mathbf{Z}_Y=8+j 6 \Omega\). If the load is connected to \(208-\mathrm{V}\) lines, predict the readings of the wattmeters \(W_1\) and \(W_2\). Find \(P_T\) and \(Q_T\).
- \[\mathbf{Z}_Y=8+j 6=10 \angle 36.87^{\circ} \Omega\]The impedance per phase is
so that the pf angle is \(36.87^{\circ}\).
- \[I_L=\frac{V_p}{\left|\mathbf{Z}_Y\right|}=\frac{208 / \sqrt{3}}{10}=12 \mathrm{~A}\], the line current is Since the line voltage
- \[\begin{aligned} P_1 & =V_L I_L \cos \left(\theta+30^{\circ}\right)=208 \times 12 \times \cos \left(36.87^{\circ}+30^{\circ}\right) \\ & =980.48 \mathrm{~W} \\ P_2 & =V_L I_L \cos \left(\theta-30^{\circ}\right)=208 \times 12 \times \cos \left(36.87^{\circ}-30^{\circ}\right) \\ & =2478.1 \mathrm{~W} \end{aligned}\]Then watt meter readings
Wattmeter 1 reads \(980.48 \mathrm{~W}\), while wattmeter 2 reads \(2478.1 \mathrm{~W}\).
\(P_2>P_1 \Rightarrow\) inductive load.
This is evident from the load \(\mathbf{Z}_Y\) itself.
- \[\begin{aligned} P_T & =P_1+P_2=3.459 \mathrm{~kW} \\ Q_T & =\sqrt{3}\left(P_2-P_1\right)=\sqrt{3}(1497.6) \mathrm{VAR}=2.594 \mathrm{~kVAR} \end{aligned}\]Finally