Mesh Analysis with Solved Problems

Demonstrative Video


Problem-1

image

Solution-1

  • \(\underline{K V L}\) in the first loop: \[\begin{aligned} &12=4\left(I_{1}-I_{2}\right)+8\left(I_{1}-I_{2}\right)+6 I_{1} \\ &\Rightarrow 12=18 I_{1}-12 I_{2} \\ &\Rightarrow 2=3 I_{1}-2 I_{2} \end{aligned}\]


Problem-2

image

Solution-2

  • Loop 1 and 2 form a supermesh. For the supermesh, \[6 \mathrm{i}_{1}+4 \mathrm{i}_{2}-5 \mathrm{i}_{3}+180=0\]

  • For loop 3, \(-\mathrm{i}_{1}-4 \mathrm{i}_{2}+7 \mathrm{i}_{3}+90=0\)

  • Also, \(\mathrm{i}_{2}=45+\mathrm{i}_{1}\)

image


Problem-3

image

Solution-3

  • Applying KVL in outer loop, \[\begin{aligned} (3+i) 2+(2+i) 2 &=10 \\ \Rightarrow \quad 6+2 i+4+2 i &=10 \\ \Rightarrow \quad 4 i &=0 \\ \Rightarrow \quad i &=0 \end{aligned}\]

image


Problem-4

image

Solution-4

  • For the supermesh, \(-50+10 \mathrm{i}_{1}+5 \mathrm{i}_{2}+4 \mathrm{i}_{\mathrm{x}}=0\),

  • but \(\mathrm{i}_{\mathrm{x}}=\mathrm{i}_{1} .\)

  • Hence, \(50-14 \mathrm{i}_{1}+5 \mathrm{i}_{2}\)

  • At node \(A, i_{1}+3+\left(v_{x} / 1\right)=i_{2}\),

  • but \(v_{x}=2\left(i_{1}-i_{2}\right)\),

  • hence, \(i_{1}+2=i_{2}\)

  • Solving (1) and (2) gives \[\begin{aligned} \mathrm{i}_{1}&=2.10 .5 \mathrm{~A}\\ \mathrm{i}_{2}&=4.105 \mathrm{~A}\\ v_{x}&=2\left(i_{1}-i_{2}\right)=4~\mathrm{Volts}\\ i_{x}&=i_{2}-2=\underline{2.105} \mathrm{amp} \end{aligned}\]


image


Problem-5

image

Solution-5


Problem-6

image

Solution-6

  • It is evident that \(\quad I_{1}=4\)

  • For mesh 4, \[12\left(\mathrm{I}_{4}-\mathrm{I}_{1}\right)+4\left(\mathrm{I}_{4}-\mathrm{I}_{3}\right)-8=0\]

image


Problem-7

image

Solution-7


Problem-8

image

Solution-8

  • For loop-1 , \(i_{1}=5 \mathrm{~A}\)

image