Solved Problems on First-Order Circuits

Demonstrative Video


Concepts of First-Order Circuits


Problem-1

image

Solution-1

image

\[\begin{aligned} R_{Th} & = R || (2R) = \dfrac{2}{3} R \\ \tau & = R_{Th} \cdot C = \dfrac{2}{3} RC~ \mathrm{sec.} \end{aligned}\]


Problem-2

image

Solution-2


Problem-3

image

Solution-3

image
Step-1

\[\begin{aligned} \text{At}~t&=0^{-}\\ V_c(0^{-})&=1 \end{aligned}\]

image
Step-2

\[\begin{aligned} \text{At}~t&=\infty\\ V_c(\infty)&=3\dfrac{2}{2+1}=2~\mathrm{V} \end{aligned}\]

Step-3 \[\begin{aligned} & \tau = RC = \dfrac{2}{3}\times 10 \times 10^{-6}\\ & V_c(t) =[V_c(0^{+})-V_c(\infty)]e^{-t/\tau}+V_c(\infty)\\ &=[1-2]e^{-t/\tau}+2 \end{aligned}\] \[\begin{aligned} &\text{At}~t=5~\mu s \Rightarrow V_c = 1.52~\mathrm{V} \end{aligned}\]


Problem-4

image

Solution-4

\[\begin{aligned} &\mathrm{v}_{\mathrm{o}}=\mathrm{v}(0)=\frac{2}{10+2}(24)=4 \mathrm{~V} \\ &\mathrm{v}(\mathrm{t})=\mathrm{v}_{\mathrm{o}} \mathrm{e}^{-\mathrm{t} / \tau}\\ &\tau=\mathrm{RC}=40 \times 10^{-6} \times 2 \times 10^{3}=\frac{2}{25} \\ &\mathrm{v}(\mathrm{t})=4 \mathrm{e}^{-12.5 \mathrm{t}} \mathrm{V} \end{aligned}\]


Problem-5

image

Solution-5

Problem-6

image

Solution-6

Applying Source Transformation

image image \[\begin{aligned} Z &=\sqrt{R^{2}+\frac{1}{(C \omega)^{2}}}\\ &=\sqrt{4+\frac{1}{(0.1 \times 5)^{2}}} =2 \sqrt{2} \\ i &=\frac{2 \sqrt{2} \sin \left(5 t-45^{\circ}\right)}{2 \sqrt{2} \angle(-45)}=\sin 5 t \mathrm{~A} \end{aligned}\]

Problem-7

image

Solution-7

\[\begin{aligned} v_{c}(t) &=V_{o} e^{-t / \tau} \\ &=10 e^{-100 t}\left[\because \tau=R C=\frac{1}{100}\right] \\ \therefore v_{c}(\text { at } 10 ~& \text{msec})=10 e^{\left(-100 \times 10 \times 10^{-3}\right)} \\ &=3.678 \mathrm{~V} \end{aligned}\]

Problem-8

image

Solution-8

At \((t=0)\) switch is closed \[\begin{aligned} V_{c}\left(0^{-}\right) &=V_{c}\left(0^{+}\right)=\frac{Q}{C} = \frac{10}{0.5}=20 \mathrm{~V} \\ V_{c}(\infty)=& 100 \mathrm{~V} \\ \end{aligned}\]

\[\begin{aligned} V_{c}(t)=& V_{c}(\infty)+\left\{V_{c}\left(0^{+}\right)-V_{c}(\infty)\right\} e^{-t/ R C} \\ V_{c}(t)=& 100+(20-100) e^{--t/ 1} \\ \therefore \quad i_{c}(t)=& C \frac{d V_{c}(t)}{d t} \\ =& 0.5 \times-80 \times\left(-e^{-t}\right)=40 e^{-t} \\ \left.i_{c}(t)\right|_{t=1}=& 40 e^{-1} = 14.71 \mathrm{~A} \end{aligned}\]


Problem-9

image

Solution-9

DELTA \(\rightarrow\) STAR

image

Here, \(\quad \tau=R C=5 \mathrm{sec}\). Now current, \[i(t)=\frac{V}{R} e^{-t / \tau}=\frac{10}{3} e^{-t / 5}=2 e^{-0.2 t}\] Energy supplied by the source, \[E=\int_{0}^{\infty} 10 \times 2 e^{-0.2 t} d t=100 \mathrm{~J}\]


Problem-10

image

Solution-10

We know: \[\begin{aligned} &i_{C}(t)=i_{C}(\infty)+\left[i_{C}\left(0^{+}\right)-i_{C}(\infty)\right] e^{-t / \tau}\\ &V_{C}\left(0^{-}\right)=V_{C}\left(0^{+}\right)=6 \mathrm{~V} \quad \text { [Given] } \end{aligned}\]

At \(t>0\)Transient image \[\tau = RC = 8~\text{sec}\] At \(t>0^{+}\) image \[i_c(0^{+}) = \dfrac{10-6}{4}=1~\text{A}\] At \(t = \infty\) Steady state image \[i_c(\infty) = 0\]

Substituting we get, \[\begin{aligned} i_{C}(t) &=e^{-t / 8} \mathrm{~A} \end{aligned}\]

\[\begin{aligned} P &=i_{C}^{2}(t) R \\ E &=\int_{0}^{\infty} P d t=\int_{0}^{\infty} i_{C}^{2}(t) R d t=\int_{0}^{\infty}\left(e^{-t / 8}\right)^{2} \times 4 d t \\ E &=\int_{0}^{\infty} 4 e^{-t / 4} d t=4 \times(-4)\left[e^{-t / 4}\right]_{t=0}^{\infty} \\ E &=-16[0-1]=16 \text { Joules } \end{aligned}\]

RL Circuits


Problem-11

image

Solution-11

Method-1: image \[\begin{aligned} &2\left(i_{1}-i_{2}\right)+1=0 \\ &6 i_{2}-2 i_{1}-3 i_{1}=0 \\ &i_{1}=-3 \mathrm{~A}, \quad i_{o}=-i_{1}=3 \mathrm{~A} \\ &R_{\mathrm{eq}}=R_{\mathrm{Th}}=\frac{v_{o}}{i_{o}}=\frac{1}{3} \Omega \\ &\tau=\frac{L}{R_{\mathrm{eq}}}=\frac{\frac{1}{2}}{\frac{1}{3}}=\frac{3}{2} \mathrm{~s} \\ &i(t)=i(0) e^{-t / \tau}\\ &=10 e^{-(2 / 3) t} \mathrm{~A}, \quad t>0 \end{aligned}\]

Method-2: image \[\begin{aligned} &\frac{1}{2} \frac{d i_{1}}{d t}+2\left(i_{1}-i_{2}\right)=0 \Rightarrow \frac{d i_{1}}{d t}+4 i_{1}-4 i_{2}=0 \\ &6 i_{2}-2 i_{1}-3 i_{1}=0 \quad \Rightarrow \quad i_{2}-\frac{5}{6} i_{1} \\ &\frac{d i_{1}}{d t}+\frac{2}{3} i_{1}=0 \quad \Rightarrow \quad \frac{d i_{1}}{i_{1}}=-\frac{2}{3} d t \\ &\left.\ln i\right|_{i(0)} ^{i(0)}=-\left.\frac{2}{3} t\right|_{0} ^{t} \quad \Rightarrow \ln \frac{i(t)}{i(0)}=-\frac{2}{3} t \\ &i(t)=i(0) e^{-(2 / 3) t}=10 e^{-(2 / 3) t} \mathrm{~A}, \quad t>0 \end{aligned}\]

image \[\begin{aligned} &v=L \frac{d i}{d t}=0.5(10)\left(-\frac{2}{3}\right) e^{-(2 / 3) t}=-\frac{10}{3} e^{-(2 / 3) t} \mathrm{~V} \\ &i_{x}(t)=\frac{v}{2}=-1.6667 e^{-(2 / 3) t} \mathrm{~A}, \quad t>0 \end{aligned}\]


Problem-12

  • The switch has been closed for a long time. At \(t=0\), the switch is opened. Calculate \(i(t)\) for \(t>0\).

image

Solution-12

  • \(t<0~\Rightarrow~S~\text{closed}~\Rightarrow ~L\) short \(\Rightarrow~16\Omega\) short

image

\[\begin{aligned} R_{eq} & = \dfrac{4\times 12}{4+12} = 3~\Omega \\ i_1 & = \dfrac{40}{2+3} = 8~\mathrm{A} \\ i(t) & = \dfrac{12}{12+4}i_1 = 6~\mathrm{A}, \quad t<0 \\ \end{aligned}\] image

\[\begin{aligned} i(0^+) & = i(0^{-}) = 6~\mathrm{A} \\ R_{eq} & = (12+4)||16 = 8~\Omega \\ \tau & = \dfrac{L}{R_{eq}} =\dfrac{1}{4}~\mathrm{s}\\ i(t) & = i(0)e^{-t/\tau}= 6e^{-4t}~\mathrm{A} \end{aligned}\]

Problem-13

image

Solution-13

  • \(t<0~\Rightarrow~S~\text{open}~\Rightarrow ~L\) short \(\Rightarrow~6\Omega\) short

image \[\begin{aligned} i_0&=0 \\ i(t) & = \dfrac{10}{2+3} = 2~\mathrm{A}, \quad t<0 \\ v_0(t)&=3i(t)=6~\mathrm{V},\quad t<0\\ i(0) & = 2 \end{aligned}\] image

\[\begin{aligned} R_{Th} & = 3||6=2~\Omega \\ \tau & = \dfrac{L}{R_{Th}}=1~\mathrm{s} \\ i(t) & = i(0)e^{-t/\tau}=2e^{-t}~\mathrm{A}, \quad t>0\\ v_0(t)&=-v_L=-L\dfrac{di}{dt} =4e^{-t}~\mathrm{V},\quad t>0 \end{aligned}\]

\[i_{o}(t)=\frac{v_{L}}{6}=-\frac{2}{3} e^{-t} \mathrm{~A}, \quad t>0\] Thus, for all time, \[\begin{gathered} i_{o}(t)=\left\{\begin{array}{ll} 0 \mathrm{~A}, & t<0 \\ -\frac{2}{3} e^{-t} \mathrm{~A}, & t>0 \end{array}, \quad v_{o}(t)= \begin{cases}6 \mathrm{~V}, & t<0 \\ 4 e^{-t} \mathrm{~V}, & t>0\end{cases} \right. \\ i(t)= \begin{cases}2 \mathrm{~A}, & t<0 \\ 2 e^{-t} \mathrm{~A}, & t \geq 0\end{cases} \end{gathered}\]

image


Problem-14

image

Solution-14

  • Intervals \(t \leq 0,0 \leq t \leq 4\), and \(t \geq 4\) separately.

  • For \(t<0\), \(S_{1}\) and \(S_{2}~\Rightarrow\) open \(\Rightarrow i=0\).

  • \(i\left(0^{-}\right)=i(0)=i\left(0^{+}\right)=0\)

  • For \(t \geq 4, ~S_{2}\) closed \(\Rightarrow\)10 - V connected.

  • This sudden change does not affect the inductor current because the current cannot change abruptly. Thus, the initial current is \[i(4)=i\left(4^{-}\right)=4\left(1-e^{-8}\right) \simeq 4 \mathrm{~A}\]