Fundamentals of Electric Circuits and Networks

Demonstrative Video


Problem-1

image

Solution-1

\[\begin{aligned} &\text { Area under graph for } 5 \mu \mathrm{sec}\\ &=\text { area of } \mathrm{OAC}+\mathrm{ABD}+\\ & \mathrm{BDEC}+ \mathrm{DGH}+ \\ & \mathrm { DHIE } \\ & \\ & =5 \times 3 / 2+2 \times 1 / 2+1 \times 3+1 \times 1 / 2+3 \times 1 \\ & =7.5+1+3+0.5+3 \\ & =\mathbf{15} \mu C \end{aligned}\] image


Problem-2

Solution-2


Problem-3

Solution-3

By connecting 2 (lamps) in series we can get the \(\mathrm{R}_{\mathrm{eq}}\) as \(484 \Omega\) \[\mathrm{P}=220^{2} / 484=100 \mathrm{~W}\] image


Problem-4

Solution-4


Problem-5

image

Solution-5

  • Slope of AB \[\begin{aligned} &= 10/2 \\ &= 5mA~ \text{[t=0 to 2 sec]} \end{aligned}\]

  • Slope of BC \[\begin{aligned} &= (10-0)/(2-5) \\ & = -3.33 mA~\text{ [t=2 to 5sec]} \end{aligned}\]

image

image


Problem-6

Solution-6


Problem-7

Solution-7


Problem-8

Solution-8


Problem-9

Solution-9

image


Problem-10

Solution-10


Problem-11

image

Solution-11

\(\mathrm{i}(\mathrm{t})\) is periodic a period in \(\mathrm{t}\) of \(\pi \mathrm{sec}\). \[\mathrm{i}(\mathrm{t})=\left\{\begin{array}{l} \left(\frac{10 \mathrm{t}}{\pi}+5\right) \quad 0 \leq \mathrm{t} \leq \frac{\pi}{2} \\ \left(-\frac{10 \mathrm{t}}{\pi}+15\right) \frac{\pi}{2} \leq \mathrm{t} \leq \pi \end{array}\right.\]

image

\[\begin{aligned} I_{\text {ave }} &=\frac{1}{\pi} \int_{t=0}^{t=\frac{\pi}{2}}\left(\frac{10 t}{\pi}+5\right) d t+\int_{t=\frac{\pi}{2}}^{t=\pi}\left(-\frac{10 t}{\pi}+15\right) d t \\ &=\frac{1}{\pi}\left[\frac{5 t^{2}}{\pi}+56\right]_{t=0}^{t=\frac{\pi}{2}}+\left[\frac{-5 t^{2}}{\pi}+15 t\right]_{t=\frac{\pi}{2}}^{t=\pi} \\ &=7.5 \mathrm{~A} \end{aligned}\]


Problem-12

Solution-12


Problem-13

image

Solution-13


Problem-14

Solution-14


Problem-15

Solution-15