Figure shows the current flowing through a capacitor. Determine the charge acquired by the capacitor up to first 5\(\mu\)sec.
We know current \(I=Q/t\) and Charge \(Q=I*t\)
Charge acquired by capacitor= Area under I vs t graph for first 5\(\mu\)sec
\[\begin{aligned} &\text { Area under graph for } 5 \mu \mathrm{sec}\\ &=\text { area of } \mathrm{OAC}+\mathrm{ABD}+\\ & \mathrm{BDEC}+ \mathrm{DGH}+ \\ & \mathrm { DHIE } \\ & \\ & =5 \times 3 / 2+2 \times 1 / 2+1 \times 3+1 \times 1 / 2+3 \times 1 \\ & =7.5+1+3+0.5+3 \\ & =\mathbf{15} \mu C \end{aligned}\]
Two coils connected in parallel across 100-V dc supply, take 10 A current from the supply. Power dissipated in one coil is 600 W. What is the resistance of each coil?
The effective resistance of the two coils in parallel is \[\mathrm{R}_{\mathrm{eff}}=100 / 10=10 \Omega\]
Power in one coil is given as \[\begin{aligned} &600=100^{2} / \mathrm{R}_{1} \\ &\Rightarrow \mathrm{R}_{1}=10000 / 600=16.67 \Omega \end{aligned}\]
Since the two coils are connected in parallel, we should have \[\begin{aligned} &10=\frac{16.67 \times \mathrm{R}_{2}}{16.67+\mathrm{R}_{2}} \\ &\Rightarrow \mathbf{R}_{2}=\mathbf{2 5} \Omega \end{aligned}\]
How many 200W/220V incandescent lamps connected in series would consume the same total power as a single 100W/220V incandescent lamp?
Resistance \(R_1\) \[\begin{aligned} &\mathrm{R}_{1}=\frac{\mathrm{V}^{2}}{\mathrm{P}_{1}} \\ &=220^{2} / 200=242 \Omega \end{aligned}\]
To make \(100 \mathrm{~W}\),
\[\mathrm{R}_{2}=220^{2} / 100=484 \Omega\]
By connecting 2 (lamps) in series we can get the \(\mathrm{R}_{\mathrm{eq}}\) as \(484 \Omega\) \[\mathrm{P}=220^{2} / 484=100 \mathrm{~W}\]
When a resistor R is connected to a current source, it consumes a power of 18 W. When the same R is connected to a voltage source having the same magnitude as the current source, the power absorbed by R is 4.5 W. The magnitude of the current source and the value of R are?
With current source, I connected across \(R\), \[P_{1}=I^{2} R=18 \mathrm{~W}\]
With the voltage source of I volts connected across to the same \(\mathrm{R}\). \[\begin{aligned} \mathrm{P}_{2}=\mathrm{I}^{2} / \mathrm{R} \\ &=4.5 \mathrm{~W} \end{aligned}\]
Multiplying both equations \[\begin{aligned} \mathrm{P}_{1} \mathrm{P}_{2}=\mathrm{I}^{4}=& 18 \times 4.5 \\ =& 81 \\ \Rightarrow \mathrm{I}=& 3 \mathrm{~A} \\ \mathrm{R}=18 / 9=& 2 \Omega \end{aligned}\]
The charge delivered by a constant voltage source is shown. Determine the current supplied by the source at
t = 1 sec
t = 3 sec
Slope of AB \[\begin{aligned} &= 10/2 \\ &= 5mA~ \text{[t=0 to 2 sec]} \end{aligned}\]
Slope of BC \[\begin{aligned} &= (10-0)/(2-5) \\ & = -3.33 mA~\text{ [t=2 to 5sec]} \end{aligned}\]
A toaster rated at 1000 W, 240 V is connected to a 220-V supply. Will the toaster be damaged? Will its rating be affected?
The resistance, and the current rating of the toaster are \[\begin{aligned} \mathrm{R} &=\mathrm{V}^{2} / \mathrm{P}=240^{2} / 1000=57.6 \Omega \\ \text { Irating }=\operatorname{Imax} &=\mathrm{P} / \mathrm{V}=1000 / 240=4.167 \mathrm{~A} \end{aligned}\]
When the toaster is connected to 220 - \(\mathrm{V}\) supply, the current drawn is \[\mathrm{I}=\mathrm{V} / \mathrm{R}=220 / 57.6=3.82 \mathrm{~A}\]
This current being less than the current rating, the toaster will not be damaged. The power consumed is \[P_{1}=220 \mathrm{~V} \times 3.82 \mathrm{~A}=840.4 \mathrm{~W}\]
Thus, the power rating is less than its original power rating.
What is the maximum voltage that can be applied across the series combination of a 150-\(\Omega\), 2-W resistor and a 100-\(\Omega\), 1-W resistor without exceeding the power rating of either resistor?
From \(\mathrm{P}=\mathrm{I}^{2} \mathrm{R}\), the maximum safe current for the \(150-\Omega\) resistor is \[\mathrm{I}_{1}=\sqrt{\mathrm{P}} / \mathrm{R}=\sqrt{2} / 150=0.115 \mathrm{~A}\]
The maximum safe current for the \(100-\Omega\) resistor is \[\mathrm{I}_{2}=\sqrt{\mathrm{P}} / \mathrm{R}=\sqrt{1} / 100=0.1 \mathrm{~A}\]
The maximum current cannot exceed the lesser of these two currents. Hence, the maximum voltage that can be applied is \[V_{\text{max}} =\mathrm{I}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)=0.1 \mathrm{x}(150+100)=\mathbf{2 5} \mathbf{V}\]
A wire, 50 m in length and 2 mm\(^2\) in cross section, has a resistance of 0.56 \(\Omega\). A 100-m length of the same wire has a resistance of 2 \(\Omega\) at the same temperature. Find the diameter of this wire.
Given both wires are of same material, so resistivities are same \[\begin{array}{lll} & \therefore \rho 1=\rho 2 \\ \mathrm{~L}_{1}=50 \mathrm{~m} & \mathrm{~A}_{1}=2 \mathrm{~mm}^{2} & \mathrm{R}_{1}=0.56 \Omega \\ \mathrm{L}_{2}=100 \mathrm{~m} & \mathrm{~A}_{2}=? & \mathrm{R}_{2}=2 \Omega \end{array}\]
We know Resistance \(\mathrm{R}=\rho \mathrm{L} / \mathrm{A}\). So, resistivity \(\rho=\mathrm{RA} / \mathrm{L}\) \[\begin{aligned} \rho 1 &=\rho 2 \\ \mathrm{R}_{1} \mathrm{~A}_{1} / \mathrm{L}_{1} &=\mathrm{R}_{2} \mathrm{~A}_{2} / \mathrm{L}_{2} \\ (0.56 \mathrm{x} 2) / 50 &=\left(2 \mathrm{x} \mathrm{A}_{2}\right) / 100 \\ \therefore \mathrm{A}_{2} &=1.12 \mathrm{~mm}^{2} \end{aligned}\]
Area of cross-section \(\mathrm{A}=\pi \times \mathrm{d}^{2} / 4\) \[\begin{aligned} 1.12 &=\pi \times \mathrm{d}^{2} / 4 \\ \mathrm{~d}^{2} &=1.42 \\ \therefore \mathrm{d}=& \mathbf{1 . 1 9 m m} \end{aligned}\]
The voltage across a 10 \(\Omega\) resistor is shown in figure. Average power dissipated by the resistor is
Power dissipated in a resistor \[\begin{aligned} &P_{\text {avg }}=V_{\text {rms }}^2 / R \\ &P_{\text {avg }}=\frac{1}{T} \int P d t \\ &P=\frac{1}{10} \frac{1}{\pi}\left[\int_{0}^{2 \pi / 3} 10^{2} d t+\int_{2 \pi / 3}^{\pi}-10^{2} d t\right] \\ &P=\frac{100}{10} \times \frac{1}{\pi}\left[\frac{2 \pi}{3}+\frac{\pi}{3}\right] \\ &\quad=10 \mathrm{~W} \end{aligned}\]
A wire-wound resistor is to be made from a 0.2 mm diameter constantan wire wound around a cylinder of 1 cm diameter. How many turns are needed for a resistance of 50 \(\Omega\). (Take resistivity of constantan as \(49 \times 10^{-8}~\Omega m\) )
We know \(\mathrm{R}=\rho \mathrm{L} / \mathrm{A}\)
Given, \[\begin{aligned} \rho&=49 \times 10^{-8} \Omega \mathrm{m}, \mathrm{R}=50 \Omega, \mathrm{d}=0.2 \mathrm{~mm} \\ \mathrm{~A}&=\pi \times \mathrm{d}^{2} / 4 \\ \quad&=\pi \times(0.2)^{2} / 4 \\ \quad&=0.0314 \mathrm{~mm}^{2}=3.14 \times 10^{-8} \mathrm{~m}^{2} \end{aligned}\]
So, \(50=49 \times 10^{-8} \times \mathrm{L} /\left(3.14 \times 10^{-8}\right)\) \[\mathrm{L}=3.204 \mathrm{~m}\]
As the wire is wound around a cylinder of radius \(0.5 \mathrm{~cm}\) \[\begin{aligned} \mathrm{L} &=2 \pi \mathrm{r} \times \mathrm{N} \\ 3.204 &=2 \pi \times 0.005 \times \mathrm{N} \\ \mathrm{N} &=101.98 \approx \mathbf{1 0 2} \text { turns } \end{aligned}\]
The average value of the current waveform shown in figure
\(\mathrm{i}(\mathrm{t})\) is periodic a period in \(\mathrm{t}\) of \(\pi \mathrm{sec}\). \[\mathrm{i}(\mathrm{t})=\left\{\begin{array}{l} \left(\frac{10 \mathrm{t}}{\pi}+5\right) \quad 0 \leq \mathrm{t} \leq \frac{\pi}{2} \\ \left(-\frac{10 \mathrm{t}}{\pi}+15\right) \frac{\pi}{2} \leq \mathrm{t} \leq \pi \end{array}\right.\]
\[\begin{aligned} I_{\text {ave }} &=\frac{1}{\pi} \int_{t=0}^{t=\frac{\pi}{2}}\left(\frac{10 t}{\pi}+5\right) d t+\int_{t=\frac{\pi}{2}}^{t=\pi}\left(-\frac{10 t}{\pi}+15\right) d t \\ &=\frac{1}{\pi}\left[\frac{5 t^{2}}{\pi}+56\right]_{t=0}^{t=\frac{\pi}{2}}+\left[\frac{-5 t^{2}}{\pi}+15 t\right]_{t=\frac{\pi}{2}}^{t=\pi} \\ &=7.5 \mathrm{~A} \end{aligned}\]
The domestic power load in a house comprises the following:
8 lamps of 100 W each,
3 fans of 80 W each,
1 refrigerator of 1/2 hp,
1 heater of 1000 W.
Calculate the total current taken from the supply of 230 V
Calculate the energy consumed in a day, if on an average only a quarter of the above load persists all the time.
The total load is given as
Current taken from the supply, \(I=\dfrac{P}{V}=\dfrac{2413}{230} \approx 10.5 \mathrm{~A}\)
Energy consumed per day \(=2413 \mathrm{~W} \times(1 / 4) \times 24=14478 \mathrm{Wh}=\mathbf{1 4 . 4 7 8} \mathbf{~ k W h}\)
Figure shows the waveform of the current passing through an inductor of resistance 1 \(\Omega\) and inductance 2 H. The energy absorbed by the inductor in the first four seconds is
Energy dissipated by the Inductance (2H), \[\begin{aligned} &=\left.\frac{1}{2} L i^{2}(t)\right|_{t=0} ^{t=4} \\ &=\frac{1}{2} \times 2 \times\left[i^{2}(4)-i^{2}(0)\right]=36 \text { jouls } \end{aligned}\]
Energy absorbed by the resistance, \[\begin{aligned} &=\int_{0}^{4} R i^{2}(t) d t =\int_{0}^{2} 9 t^{2} d t+(36 \times 2) \\ &=\left.3 t^{3}\right|_{0} ^{2}+72 \\ &=24+72 \\ &=96 \mathrm{~J} \end{aligned}\]
Total energy absorbed by the physical inductor \[\begin{aligned} &=36+96 \\ &=132 \mathrm{~J} \end{aligned}\]
The current entering the positive terminal of a device is \(i(t)=3 e^{-2 t} \mathrm{~A}\) and the voltage across the device is \(v(t)=5 d i / d t \mathrm{~V}\)
Find the charge delivered to the device between \(\mathrm{t}=0\) and \(\mathrm{t}=2 \mathrm{~s}\)
Calculate the power absorbed.
Determine the energy absorbed in \(3 \mathrm{~s}\).
(a) \[\begin{aligned} \mathrm{q}=\int \mathrm{idt}=\int_{0}^{2} 3 \mathrm{e}^{-2 \mathrm{t}} \mathrm{dt}=\left.\frac{-3}{2} \mathrm{e}^{2 \mathrm{t}}\right|_{0} ^{2} \\ &=-1.5\left(\mathrm{e}^{-4}-1\right)=\\ \underline{1.4725 \mathrm{C}} \end{aligned}\]
(b) \[\begin{aligned} &\mathrm{v}=\frac{5 \mathrm{di}}{\mathrm{dt}}=-6 \mathrm{e}^{2 \mathrm{t}}(5)=-30 \mathrm{e}^{-2 \mathrm{t}} \\ &\mathrm{p}=\mathrm{vi}=-90 \mathrm{e}^{-4 \mathrm{t}} \mathrm{W} \end{aligned}\]
(c) \(w=\int \mathrm{pdt}=-90 \int_{0}^{3} \mathrm{e}^{-4 \mathrm{t}} \mathrm{dt}=\left.\frac{-90}{-4} \mathrm{e}^{-4 t}\right|_{0} ^{3}=\underline{-22.5 \mathrm{~J}}\)
The charge entering the positive terminal of an element is \[q=10 \sin 4 \pi t \mathrm{mC}\] while the voltage across the element (plus to minus) is \[v=2 \cos 4 \pi t \mathrm{~V}\]
Find the power delivered to the element at \(\mathrm{t}=0.3 \mathrm{~s}\)
Calculate the energy delivered to the element between 0 and \(0.6 \mathrm{~s}\).
Current \[i=\frac{d q}{d t}=40 \pi \cos 4 \pi t \mathrm{~mA}\]
Power \[\begin{aligned} &p=v i=80 \pi \cos ^{2} 4 \pi t \mathrm{~mW} \\ &\text { At } \mathrm{t}=0.3 \mathrm{~s} \\ & p=80 \pi \cos ^{2}(4 \pi \times 0.3)=\underline{164.5 \mathrm{~mW}} \end{aligned}\]
Energy \[\begin{aligned} \text { (b) } W=\int p d t=80 \pi \int_{0}^{0.6} \cos ^{2} 4 \pi t d t=40 \pi \int_{0}^{0.6}[1+\cos 8 \pi t] d t \mathrm{~mJ} \\ W=40 \pi\left[0.6+\frac{1}{8 \pi} \sin 8 \pi t \mid \begin{array}{c} 0.6 \\ 0 \end{array}\right]=\underline{78.34 \mathrm{~mJ}} \end{aligned}\]