Solved Problems on Norton's Theorem

Demonstrative Video


Problem-1

image

Solution-1

image
  • \[\begin{aligned} I_{N}+I_{1}+2&=0\\ I_{N}-\frac{5}{6}+2 &=0 \\ I_{N} &=-\frac{7}{6} \mathrm{~A} \end{aligned}\]
    Applying KCL at node
\[R_N=24~\Omega\]

Problem-2

  • Determine \(V_0\) using Norton’s theorem?

image

Solution-2

  • Norton resistance:

\[R_{N} = 10+2+(12||24) = 20~{k\Omega}\]
  • Norton current:

    image
  • \[I_{N} = I_{v}+I_{i}\]
    Apply superposition theorem by keeping one source active at a time
  • Considering voltage source only

    \[I_{1} = \dfrac{8}{8+12}\times 3 = 1.2~\mbox{mA} \quad 12 || 24 = 8~{k\Omega}\]
  • \[I_{2} = -1.5~\mbox{mA}\]
    Considering current source only, we will get parallel equivalent resistance
  • Norton current \(I_{N}=1.2-1.5=-0.3~\mbox{mA}\)

  • \[V_{0} = (1~{k\Omega})\dfrac{20}{20+1}\times (-0.3~\mbox{mA}) = -0.285~\mbox{V}\]
    Norton equivalent circuit

Problem-3

  • Determine Norton equivalent current and resistance at terminal a-b?

image

Solution-3

  • \[R_{N} = 12 || (20+40) = 10~\Omega\]
    Determine Norton resistance
  • Determine Norton current
    image
  • \[\begin{aligned} -120+80+60I_{N}&=0\\ I_{N}&=0.66~A \end{aligned}\]
    Appling source transformation and KVL

Problem-4

  • Determine the current \(i\) using Norton equivalent circuit?

image

Solution-4

  • \[\begin{aligned} R_{N} & = 6+4=10~\Omega\\ 2+(12-v)/6&=v/4 \Rightarrow v = 9.6~V\\ I_{N}&=-(12-v)/6=0.4 \Rightarrow I_{N} = -0.4~A \end{aligned}\]
    Norton resistance and current
  • \[\begin{aligned} i & = \dfrac{10}{10+5}(4-0.4)=2.4~A \end{aligned}\]
    Combining the RHS circuit to Norton equivalent


Problem-5

  • Find the Norton equivalent circuit ?

image

Solution-5

  • \[\begin{aligned} \dfrac{v_1}{8}+\dfrac{v_1}{2}+\dfrac{v_1-v_2}{2}&=0 \end{aligned}\]
    By KCL at node
  • \[\begin{aligned} i_1+2i_1&=\dfrac{v_2}{2} \end{aligned}\]
    By KCL at node
  • \[i_1=\dfrac{v_1-v_2}{2}\]
    Also,
image
  • \[\begin{aligned} v_1&=0~V\\ v_2&=0~V\\ i_{sc} &=\dfrac{v_1}{2}-2i_1=\dfrac{v_1}{2}-2(\dfrac{v_1-v_2}{2})=0~A \end{aligned}\]
    On solving

image
image

\[R_0 = \dfrac{v_0}{i_0}=3~\Omega\]