Solved Problems on Norton's Theorem

Demonstrative Video


Problem-1

image

Solution-1

image

  • Applying KCL at node \(a\) \[\begin{aligned} I_{N}+I_{1}+2&=0\\ I_{N}-\frac{5}{6}+2 &=0 \\ I_{N} &=-\frac{7}{6} \mathrm{~A} \end{aligned}\]

image \[R_N=24~\Omega\]


Problem-2

image

Solution-2

image \[R_{N} = 10+2+(12||24) = 20~{k\Omega}\]


Problem-3

image

Solution-3


Problem-4

image

Solution-4



Problem-5

image

Solution-5

  • By KCL at node \(v_1\) \[\begin{aligned} \dfrac{v_1}{8}+\dfrac{v_1}{2}+\dfrac{v_1-v_2}{2}&=0 \end{aligned}\]

  • By KCL at node \(v_2\) \[\begin{aligned} i_1+2i_1&=\dfrac{v_2}{2} \end{aligned}\]

  • Also, \[i_1=\dfrac{v_1-v_2}{2}\]

image

image image

\[R_0 = \dfrac{v_0}{i_0}=3~\Omega\]