Demonstrative Video
Unbalanced Three-Phase Systems
Caused by two possible situations:
the source voltages are not equal in magnitude and/or differ in phase by angles that are unequal,
load impedances are unequal

Unbalanced \(3\phi\) systems are solved by mesh and nodal analysis
- \[\begin{aligned} \mathbf{I}_{a} &=\frac{\mathbf{V}_{A N}}{\mathbf{Z}_{A}}, \quad \mathbf{I}_{b}=\frac{\mathbf{V}_{B N}}{\mathbf{Z}_{B}}, \quad \mathbf{I}_{c}=\frac{\mathbf{V}_{C N}}{\mathbf{Z}_{C}} \\ \mathbf{I}_{n} &=-\left(\mathbf{I}_{a}+\mathbf{I}_{b}+\mathbf{I}_{c}\right) \end{aligned}\]The line currents are determined by Ohm’s law
To calculate power in an unbalanced three-phase system requires that we find the power in each phase
Total power is sum of the powers in the three phases.
Problem
Find:
the line currents,
the total complex power absorbed by the load,
the total complex power absorbed by the source.

\[\begin{aligned}
\text{Mesh-1} \quad (10+j 5) \mathbf{I}_{1}-10 \mathbf{I}_{2}
&=120 \sqrt{3} \angle {30^{\circ}} \\
\text{Mesh-2} \quad -10 \mathbf{I}_{1}+(10-j 10) \mathbf{I}_{2}
&=120 \sqrt{3} \angle-90^{\circ} \\
{\left[\begin{array}{cc}
10+j 5 & -10 \\
-10 & 10-j 10
\end{array}\right]\left[\begin{array}{l}
\mathbf{I}_{1} \\
\mathbf{I}_{2}
\end{array}\right] } &=\left[\begin{array}{c}
120 \sqrt{3} \angle 30^{\circ} \\
120 \sqrt{3} \angle-90^{\circ}
\end{array}\right] \\
\mathbf{I}_{1} &=56.78 \mathrm{~A} \\
\mathbf{I}_{2} &=42.75 \angle 24.9^{\circ} \mathrm{A}
\end{aligned}\]
\[\begin{aligned}
&\mathbf{I}_{a}=\mathbf{I}_{1}=56.78 \mathrm{~A}\\ &
\mathbf{I}_{c}=-\mathbf{I}_{2}=42.75 \angle-155.1^{\circ} \mathrm{A} \\
&\mathbf{I}_{b}=\mathbf{I}_{2}-\mathbf{I}_{1}=25.46 \angle
135^{\circ} \mathrm{A} \\
&\mathbf{S}_{A}=\left|\mathbf{I}_{a}\right|^{2}
\mathbf{Z}_{A}\\
&=(56.78)^{2}(j 5)=j 16,120 \mathrm{VA} \\
&\mathbf{S}_{B}=\left|\mathbf{I}_{b}\right|^{2}
\mathbf{Z}_{B}\\
&=(25.46)^{2}(10)=6480 \mathrm{VA} \\
&\mathbf{S}_{C}=\left|\mathbf{I}_{c}\right|^{2}
\mathbf{Z}_{C}\\
&=(42.75)^{2}(-j 10)\\
&=-j 18,276 \mathrm{VA} \\
&\mathbf{S}_{L}=\mathbf{S}_{A}+\mathbf{S}_{B}+\mathbf{S}_{C}\\
&=6480-j 2156 \mathrm{VA}
\end{aligned}\]