Forced or steady-state response of circuits to sinusoidal inputs can be obtained by using phasor.
Covered Ohm’s and Kirchhoff’s laws for ac circuits.
Nodal analysis, mesh analysis, Thevenin’s theorem, Norton’s theorem, superposition, and source transformations in ac circuits.
Techniques already introduced for dc circuits.
Illustration with examples.
Find \(i_x\) using Nodal analysis?
\[\begin{aligned} 20 \cos 4 t & \Rightarrow 20 \angle 0^{\circ}\\ \omega &= 4~\text{rad/s} \\ 1 \mathrm{H} & \Rightarrow j \omega L=j 4 \\ 0.5 \mathrm{H} & \Rightarrow j \omega L=j 2 \\ 0.1 \mathrm{~F} & \Rightarrow \frac{1}{j \omega C}=-j 2.5 \end{aligned}\]
\[\begin{aligned} &\frac{20-\mathbf{V}_{1}}{10}=\frac{\mathbf{V}_{1}}{-j 2.5}+\frac{\mathbf{V}_{1}-\mathbf{V}_{2}}{j 4} \quad \Rightarrow (1+j 1.5) \mathbf{V}_{1}+j 2.5 \mathbf{V}_{2}=20 \\ &2 \mathbf{I}_{x}+\frac{\mathbf{V}_{1}-\mathbf{V}_{2}}{j 4}=\frac{\mathbf{V}_{2}}{j 2} \quad \Rightarrow \frac{2 \mathbf{V}_{1}}{-j 2.5}+\frac{\mathbf{V}_{1}-\mathbf{V}_{2}}{j 4}=\frac{\mathbf{V}_{2}}{j 2} \quad \Rightarrow 11 \mathbf{V}_{1}+15 \mathbf{V}_{2}=0 \\ &\mathbf{I}_{x}=\mathbf{V}_{1} /-j 2.5 \\ &{\left[\begin{array}{cc} 1+j 1.5 & j 2.5 \\ 11 & 15 \end{array}\right]\left[\begin{array}{c} \mathbf{V}_{1} \\ \mathbf{V}_{2} \end{array}\right]=\left[\begin{array}{c} 20 \\ 0 \end{array}\right]} \Rightarrow \mathbf{V}_{1}=18.97 \angle 18.43^{\circ} \mathrm{V} \\ & \hspace{16em} \mathbf{V}_{2}=13.91 \angle 198.3^{\circ} \mathrm{V} \\ &\mathbf{I}_{x}=\frac{\mathbf{V}_{1}}{-j 2.5}=\frac{18.97 \angle 18.43^{\circ}}{2.5 \angle-90^{\circ}}=7.59 \angle 108.4^{\circ} \mathrm{A}\\ \Rightarrow & i_{x}=7.59 \cos \left(4 t+108.4^{\circ}\right) \mathrm{A} \end{aligned}\]
Compute \(V_1\) and \(V_2\) ?
\[\begin{aligned} &3=\frac{\mathbf{V}_{1}}{-j 3}+\frac{\mathbf{V}_{2}}{j 6}+\frac{\mathbf{V}_{2}}{12} \\ &\mathbf{V}_{1}=\mathbf{V}_{2}+10 \angle 45^{\circ} \end{aligned}\]
\[\begin{aligned} &\mathbf{V}_{1}=25.78 \angle-70.48^{\circ} \mathrm{V} \\ &\mathbf{V}_{2}=31.41 \angle-87.18^{\circ} \mathrm{V} \end{aligned}\]
Determine the current \(I_0\) using Mesh analysis ?
\[\begin{array}{r} (8+j 10-j 2) \mathbf{I}_{1}-(-j 2) \mathbf{I}_{2}-j 10 \mathbf{I}_{3}=0 \\ (4-j 2-j 2) \mathbf{I}_{2}-(-j 2) \mathbf{I}_{1}-(-j 2) \mathbf{I}_{3}+20 \angle 90^{\circ}=0 \end{array}\] For mesh \(3, \mathbf{I}_{3}=5\). \[\begin{gathered} (8+j 8) \mathbf{I}_{1}+j 2 \mathbf{I}_{2}=j 50 \\ j 2 \mathbf{I}_{1}+(4-j 4) \mathbf{I}_{2}=-j 20-j 10 \\ {\left[\begin{array}{cc} 8+j 8 & j 2 \\ j 2 & 4-j 4 \end{array}\right]\left[\begin{array}{c} \mathbf{I}_{1} \\ \mathbf{I}_{2} \end{array}\right]=\left[\begin{array}{c} j 50 \\ -j 30 \end{array}\right]} \\ \mathbf{I}_{2}=6.12 \angle-35.22^{\circ} \mathrm{A} \\ \mathbf{I}_{o}=-\mathbf{I}_{2}=6.12 \angle 144.78^{\circ} \mathrm{A} \end{gathered}\]
Determine \(V_0\) using mesh analysis?
\[\begin{aligned} &-10+(8-j 2) \mathbf{I}_{1}-(-j 2) \mathbf{I}_{2}-8 \mathbf{I}_{3} =0 \\ &\mathbf{I}_{2} =-3 \\ &(8-j 4) \mathbf{I}_{3}-8 \mathbf{I}_{1}+(6+j 5) \mathbf{I}_{4}-j 5 \mathbf{I}_{2} =0 \\ &\mathbf{I}_{4} =\mathbf{I}_{3}+4 \end{aligned}\]
\[\begin{aligned} \mathbf{I}_{1} &=3.618 \angle 274.5^{\circ} \mathrm{A} \\ \mathbf{V}_{o} &=-j 2\left(\mathbf{I}_{1}-\mathbf{I}_{2}\right) \\ &=9.756 \angle 222.32^{\circ} \mathrm{V} \end{aligned}\]