Sinusoidal Steady-State Analysis

Demonstrative Video


Steady-State Analysis Methodology

  • Forced or steady-state response of circuits to sinusoidal inputs can be obtained by using phasor.

  • Covered Ohm’s and Kirchhoff’s laws for ac circuits.

  • Nodal analysis, mesh analysis, Thevenin’s theorem, Norton’s theorem, superposition, and source transformations in ac circuits.

  • Techniques already introduced for dc circuits.

  • Illustration with examples.

image

Nodal Analysis

Find \(i_x\) using Nodal analysis?

image

\[\begin{aligned} 20 \cos 4 t & \Rightarrow 20 \angle 0^{\circ}\\ \omega &= 4~\text{rad/s} \\ 1 \mathrm{H} & \Rightarrow j \omega L=j 4 \\ 0.5 \mathrm{H} & \Rightarrow j \omega L=j 2 \\ 0.1 \mathrm{~F} & \Rightarrow \frac{1}{j \omega C}=-j 2.5 \end{aligned}\]
\[\begin{aligned} &\frac{20-\mathbf{V}_{1}}{10}=\frac{\mathbf{V}_{1}}{-j 2.5}+\frac{\mathbf{V}_{1}-\mathbf{V}_{2}}{j 4} \quad \Rightarrow (1+j 1.5) \mathbf{V}_{1}+j 2.5 \mathbf{V}_{2}=20 \\ &2 \mathbf{I}_{x}+\frac{\mathbf{V}_{1}-\mathbf{V}_{2}}{j 4}=\frac{\mathbf{V}_{2}}{j 2} \quad \Rightarrow \frac{2 \mathbf{V}_{1}}{-j 2.5}+\frac{\mathbf{V}_{1}-\mathbf{V}_{2}}{j 4}=\frac{\mathbf{V}_{2}}{j 2} \quad \Rightarrow 11 \mathbf{V}_{1}+15 \mathbf{V}_{2}=0 \\ &\mathbf{I}_{x}=\mathbf{V}_{1} /-j 2.5 \\ &{\left[\begin{array}{cc} 1+j 1.5 & j 2.5 \\ 11 & 15 \end{array}\right]\left[\begin{array}{c} \mathbf{V}_{1} \\ \mathbf{V}_{2} \end{array}\right]=\left[\begin{array}{c} 20 \\ 0 \end{array}\right]} \Rightarrow \mathbf{V}_{1}=18.97 \angle 18.43^{\circ} \mathrm{V} \\ & \hspace{16em} \mathbf{V}_{2}=13.91 \angle 198.3^{\circ} \mathrm{V} \\ &\mathbf{I}_{x}=\frac{\mathbf{V}_{1}}{-j 2.5}=\frac{18.97 \angle 18.43^{\circ}}{2.5 \angle-90^{\circ}}=7.59 \angle 108.4^{\circ} \mathrm{A}\\ \Rightarrow & i_{x}=7.59 \cos \left(4 t+108.4^{\circ}\right) \mathrm{A} \end{aligned}\]

Super-Nodal Analysis

Compute \(V_1\) and \(V_2\) ?

image

\[\begin{aligned} &3=\frac{\mathbf{V}_{1}}{-j 3}+\frac{\mathbf{V}_{2}}{j 6}+\frac{\mathbf{V}_{2}}{12} \\ &\mathbf{V}_{1}=\mathbf{V}_{2}+10 \angle 45^{\circ} \end{aligned}\]
\[\begin{aligned} &\mathbf{V}_{1}=25.78 \angle-70.48^{\circ} \mathrm{V} \\ &\mathbf{V}_{2}=31.41 \angle-87.18^{\circ} \mathrm{V} \end{aligned}\]

Mesh Analysis

Determine the current \(I_0\) using Mesh analysis ?

image

\[\begin{array}{r} (8+j 10-j 2) \mathbf{I}_{1}-(-j 2) \mathbf{I}_{2}-j 10 \mathbf{I}_{3}=0 \\ (4-j 2-j 2) \mathbf{I}_{2}-(-j 2) \mathbf{I}_{1}-(-j 2) \mathbf{I}_{3}+20 \angle 90^{\circ}=0 \end{array}\]
. For mesh

Super-Mesh Analysis

Determine \(V_0\) using mesh analysis?

image

\[\begin{aligned} &-10+(8-j 2) \mathbf{I}_{1}-(-j 2) \mathbf{I}_{2}-8 \mathbf{I}_{3} =0 \\ &\mathbf{I}_{2} =-3 \\ &(8-j 4) \mathbf{I}_{3}-8 \mathbf{I}_{1}+(6+j 5) \mathbf{I}_{4}-j 5 \mathbf{I}_{2} =0 \\ &\mathbf{I}_{4} =\mathbf{I}_{3}+4 \end{aligned}\]
\[\begin{aligned} \mathbf{I}_{1} &=3.618 \angle 274.5^{\circ} \mathrm{A} \\ \mathbf{V}_{o} &=-j 2\left(\mathbf{I}_{1}-\mathbf{I}_{2}\right) \\ &=9.756 \angle 222.32^{\circ} \mathrm{V} \end{aligned}\]