Sinusoidal Signals & Phasors

Demonstrative Video


Introduction


Sinusoidal Currents and Voltages


Lagging and Leading

  • A more general form of the sinusoid \[\begin{aligned} &\boxed{v(t) = V_m \sin(\omega t + \theta)}\\ \theta & = \text{Phase angle} \end{aligned}\]

image


Converting Sines to Cosines

  • sine and cosine are essentially the same function, but with a \(90^{\circ}\) phase difference

  • \(\sin \omega t = \cos(\omega t - 90^{\circ})\)

  • Multiplies of \(\pm 360^{\circ}\) from argument without function change

\[ \begin{aligned} &\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\ &\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\ &\sin \left(\omega t \pm 180^{\circ}\right)=-\sin \omega t \\ &\cos \left(\omega t \pm 180^{\circ}\right)=-\cos \omega t \\ &\sin \left(\omega t \pm 90^{\circ}\right)=\pm \cos \omega t \\ &\cos \left(\omega t \pm 90^{\circ}\right)=\mp \sin \omega t \end{aligned} \] image

\[\begin{aligned} v_{1} &=V_{m_{1}} \cos \left(5 t+10^{\circ}\right) \\ &=V_{m_{1}} \sin \left(5 t+90^{\circ}+10^{\circ}\right) \\ &=V_{m_{1}} \sin \left(5 t+100^{\circ}\right) \end{aligned}\] \[\text{leads}~v_{2}=V_{m_{2}} \sin \left(5 t-30^{\circ}\right) \quad \text{by} ~ 130^{\circ}\] or, \(v_{1}\) lags \(v_{2}\) by \(230^{\circ}\), since \(v_{1}\) may be written as \[v_1 = V_{m1} \sin(5t-260^{\circ})\]


Phasors

Addition: \[z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+j\left(y_{1}+y_{2}\right)\] Subtraction: \[z_{1}-z_{2}=\left(x_{1}-x_{2}\right)+j\left(y_{1}-y_{2}\right)\] Multiplication: \[z_{1} z_{2}=r_{1} r_{2} \angle \phi_{1}+\phi_{2}\] Division: \[\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \angle \phi_{1}-\phi_{2}\] Reciprocal: \[\frac{1}{z}=\frac{1}{r} \angle-\phi\] Square Root: \[\sqrt{z}=\sqrt{r} / \phi / 2\] Complex Conjugate: \[z^{*}=x-j y=r \angle-\phi=r e^{-j \phi}\]

image


Sinusoidal Phasor

image

\(v(t)\) \(\mathrm{V}\)
Instantaneous or time-domain frequency or phasor domain
time-dependent not
real no complex term generally complex

Problem