Sinusoidal Signals & Phasors

Demonstrative Video


Introduction


Sinusoidal Currents and Voltages


Lagging and Leading

  • A more general form of the sinusoid v(t)=Vmsin(ωt+θ)θ=Phase anglev(t)=Vmsin(ωt+θ)θ=Phase angle

image


Converting Sines to Cosines

  • sine and cosine are essentially the same function, but with a 9090 phase difference

  • sinωt=cos(ωt90)sinωt=cos(ωt90)

  • Multiplies of ±360±360 from argument without function change

sin(A±B)=sinAcosB±cosAsinBcos(A±B)=cosAcosBsinAsinBsin(ωt±180)=sinωtcos(ωt±180)=cosωtsin(ωt±90)=±cosωtcos(ωt±90)=sinωtsin(A±B)=sinAcosB±cosAsinBcos(A±B)=cosAcosBsinAsinBsin(ωt±180)=sinωtcos(ωt±180)=cosωtsin(ωt±90)=±cosωtcos(ωt±90)=sinωt image

v1=Vm1cos(5t+10)=Vm1sin(5t+90+10)=Vm1sin(5t+100) leads v2=Vm2sin(5t30)by 130 or, v1 lags v2 by 230, since v1 may be written as v1=Vm1sin(5t260)


Phasors

Addition: z1+z2=(x1+x2)+j(y1+y2) Subtraction: z1z2=(x1x2)+j(y1y2) Multiplication: z1z2=r1r2ϕ1+ϕ2 Division: z1z2=r1r2ϕ1ϕ2 Reciprocal: 1z=1rϕ Square Root: z=r/ϕ/2 Complex Conjugate: z=xjy=rϕ=rejϕ

image


Sinusoidal Phasor

image

v(t) V
Instantaneous or time-domain frequency or phasor domain
time-dependent not
real no complex term generally complex

Problem