also called Tank circuit
Y=H(ω)=IVY=1R+j(ωC−1ωL)ωC−1ωL=0ω0=1√LCrad/s ω1=−12RC+√(12RC)2+1LCω2=12RC+√(12RC)2+1LCB=ω2−ω1=1RCQ=ω0B=ω0RC=Rω0L
Half-power frequencies ω1=ω0√1+(12Q)2−ω02Q,ω2=ω0√1+(12Q)2+ω02Q
For high Q circuits Q≥10 ω1≃ω0−B2,ω2≃ω0+B2
Characteristic | Series circuit | Parallel circuit |
---|---|---|
Resonant freq, ω0 | 1√LC | 1√LC |
Quality factor, Q | ω0LR or 1ω0RC | Rω0L or ω0RC |
Bandwidth, B | ω0Q | ω0Q |
Half-power freq., ω1,2 | ω0√1+(12Q)2±ω02Q | ω0√1+(12Q)2±ω02Q |
For Q≥10,ω1,ω2 | ω0±B2 | ω0±B2 |
Let R=8 kΩ, L=0.2 mH, and C=8 μF. calculate
ω0,1,2, Q, B
power dissipated at ω0,1,2
ω0=1√LC=25 krad/sQ=Rω0L=1600B=ω0Q=15.625 rad/sω1=ω0−B2=24,992 rad/sω2=ω0+B2=25,008 rad/s at ω0 ⇒ Z=RI0=VR=10∠−90∘8000=1.25∠−90∘ mAat ω0 P=12|I0|2R=6.25 mWat ω1,2 P=3.125 mW