Parallel Resonance of RLC Circuits

Demonstrative Video


PARALLEL RESONANCE

image

also called Tank circuit

image

\[\begin{aligned} \mathbf{Y}&=H(\omega) =\frac{\mathbf{I}}{\mathbf{V}}\\ \mathbf{Y} & =\frac{1}{R}+j\left(\omega C-\frac{1}{\omega L}\right) \\ & \omega C-\frac{1}{\omega L}=0 \\ \omega_{0} & =\frac{1}{\sqrt{L C}} \operatorname{rad} / \mathrm{s} \\ \end{aligned}\]
  • \[\begin{aligned} \omega_{1} &=\omega_{0} \sqrt{1+\left(\frac{1}{2 Q}\right)^{2}}-\frac{\omega_{0}}{2 Q}, \quad \omega_{2}=\omega_{0} \sqrt{1+\left(\frac{1}{2 Q}\right)^{2}}+\frac{\omega_{0}}{2 Q} \end{aligned}\]
    Half-power frequencies
  • \[\begin{aligned} \omega_{1} & \simeq \omega_{0}-\frac{B}{2}, \quad \omega_{2} \simeq \omega_{0}+\frac{B}{2} \end{aligned}\]
    circuits For high

Resonant RLC circuits

Characteristic Series circuit Parallel circuit
Resonant freq, \(\omega_{0}\) \(\dfrac{1}{\sqrt{L C}}\) \(\dfrac{1}{\sqrt{L C}}\)
Quality factor, Q \(\dfrac{\omega_{0} L}{R} \text { or } \dfrac{1}{\omega_{0} R C}\) \(\dfrac{R}{\omega_{0} L} \text { or } \omega_{0} R C\)
Bandwidth, B \(\dfrac{\omega_{0}}{Q}\) \(\dfrac{\omega_{0}}{Q}\)
Half-power freq., \(\omega_{1,2}\) \(\omega_{0} \sqrt{1+\left(\dfrac{1}{2 Q}\right)^{2}} \pm \dfrac{\omega_{0}}{2 Q}\) \(\omega_{0} \sqrt{1+\left(\dfrac{1}{2 Q}\right)^{2}} \pm \dfrac{\omega_{0}}{2 Q}\)
For \(Q \geq 10, \omega_{1}, \omega_{2}\) \(\omega_{0} \pm \dfrac{B}{2}\) \(\omega_{0} \pm \dfrac{B}{2}\)

Problem

Let \(R=8~k \Omega\), \(L=0.2~\mathrm{mH}\), and \(C=8~\mathrm{\mu F}\). calculate

  • \(\omega_{0,1,2}, ~Q, ~B\)

  • power dissipated at \(\omega_{0,1,2}\)

image
\[\begin{aligned} \omega_0 & = \dfrac{1}{\sqrt{LC}} = 25~\mathrm{krad/s} \\ Q & = \dfrac{R}{\omega_0 L} = 1600 \\ B & = \dfrac{\omega_0}{Q} = 15.625 ~\mathrm{rad/s} \\ \omega_1 & = \omega_0 - \dfrac{B}{2} = 24,992~\mathrm{rad/s} \\ \omega_2 & = \omega_0 + \dfrac{B}{2} = 25,008~\mathrm{rad/s} \\ \end{aligned}\]