Parallel Resonance of RLC Circuits

Demonstrative Video


PARALLEL RESONANCE

image

also called Tank circuit

image

Y=H(ω)=IVY=1R+j(ωC1ωL)ωC1ωL=0ω0=1LCrad/sY=H(ω)=IVY=1R+j(ωC1ωL)ωC1ωL=0ω0=1LCrad/s
  • ω1=ω01+(12Q)2ω02Q,ω2=ω01+(12Q)2+ω02Qω1=ω01+(12Q)2ω02Q,ω2=ω01+(12Q)2+ω02Q
    Half-power frequencies
  • ω1ω0B2,ω2ω0+B2ω1ω0B2,ω2ω0+B2
    circuits For high

Resonant RLC circuits

Characteristic Series circuit Parallel circuit
Resonant freq, ω0ω0 1LC1LC 1LC1LC
Quality factor, Q ω0LR or 1ω0RCω0LR or 1ω0RC Rω0L or ω0RCRω0L or ω0RC
Bandwidth, B ω0Qω0Q ω0Qω0Q
Half-power freq., ω1,2ω1,2 ω01+(12Q)2±ω02Qω01+(12Q)2±ω02Q ω01+(12Q)2±ω02Qω01+(12Q)2±ω02Q
For Q10,ω1,ω2Q10,ω1,ω2 ω0±B2ω0±B2 ω0±B2ω0±B2

Problem

Let R=8 kΩR=8 kΩ, L=0.2 mHL=0.2 mH, and C=8 μFC=8 μF. calculate

  • ω0,1,2, Q, Bω0,1,2, Q, B

  • power dissipated at ω0,1,2ω0,1,2

image
ω0=1LC=25 krad/sQ=Rω0L=1600B=ω0Q=15.625 rad/sω1=ω0B2=24,992 rad/sω2=ω0+B2=25,008 rad/sω0=1LC=25 krad/sQ=Rω0L=1600B=ω0Q=15.625 rad/sω1=ω0B2=24,992 rad/sω2=ω0+B2=25,008 rad/s