Circuit Analysis: Mesh and Nodal Methods

Demonstrative Video


Node-Voltage Analysis

  • Steps involve in node-voltage analysis:

    1. Selecting the Reference Node

    2. Assigning Node Voltages

    3. Finding Element Voltages in Terms of the Node Voltages

    4. Writing KCL Equations in Terms of the Node Voltages

image

image

Introduction

Nodal analysis

Steps for nodal analysis

  • Step-1 : Choose reference or ground node, assuming to have zero potential.

image

  • Step-2 : Assign voltage designations to non-reference nodes

image

  • Step-3 : apply KCL to each non-reference node \[\begin{aligned} \text{At node 1},& \quad I_{1}=I_{2}+i_{1}+i_{2}\\ \text{At node 2}, &\quad I_{2}+i_{2}=i_{3} \end{aligned}\]

image

\[i = \dfrac{V_{\text{higher}}-V_{\text{lower}}}{R}\]

\[\begin{aligned} &i_{1}=\frac{v_{1}-0}{R_{1}} \quad \text { or } \quad i_{1}=G_{1} v_{1} \\ &i_{2}=\frac{v_{1}-v_{2}}{R_{2}} \quad \text { or } i_{2}=G_{2}\left(v_{1}-v_{2}\right) \\ &i_{3}=\frac{v_{2}-0}{R_{3}} \quad \text { or } \quad i_{3}=G_{3} v_{2} \end{aligned}\] \[\begin{aligned} I_{1}&=I_{2}+\dfrac{v_{1}}{R_{1}}+\dfrac{v_{1}-v_{2}}{R_{2}} \\ \text{or}~ I_{1}&=I_{2}+G_{1} v_{1}+G_{2}\left(v_{1}-v_{2}\right) \\ &I_{2}+\dfrac{v_{1}-v_{2}}{R_{2}}=\dfrac{v_{2}}{R_{3}} \\ \text{or}~ &I_{2}+G_{2}\left(v_{1}-v_{2}\right)=G_{3} v_{2} \end{aligned}\]

\[\left[\begin{array}{cc} G_{1}+G_{2} & -G_{2} \\ -G_{2} & G_{2}+G_{3} \end{array}\right]\left[\begin{array}{l} v_{1} \\ v_{2} \end{array}\right]=\left[\begin{array}{c} I_{1}-I_{2} \\ I_{2} \end{array}\right]\]

CRAMER’s RULE: image

Nodal Analysis with Voltage Sources

Consider the following two possibilities:

  • Case-1 : voltage source is connected between the reference node and a non-reference node, we simply set the voltage at the nonreference node equal to the voltage of the voltage source

  • Case-2 : If the voltage source (dependent or independent) is connected between two nonreference nodes, the two nonreference nodes form a generalized node or supernode; we apply both KCL and KVL to determine the node voltages.

image A supernode is formed by enclosing a (dependent or independent) voltage source connected between two nonreference nodes and any elements connected in parallel with it.

  • nodes 2 and 3 form a supernode. ( could have more than two nodes also)

image

Mesh Analysis

Steps to Determine Mesh Currents:

  1. 1. Assign mesh currents \(i_{1}, i_{2}, \ldots, i_{n}\) to the \(n\) meshes.

  2. Apply KVL to each of the \(n\) meshes. Use Ohm’s law to express the voltages in terms of the mesh currents.

  3. Solve the resulting \(n\) simultaneous equations to get the mesh currents.

\[\left[\begin{array}{cc} R_{1}+R_{3} & -R_{3} \\ -R_{3} & R_{2}+R_{3} \end{array}\right]\left[\begin{array}{l} i_{1} \\ i_{2} \end{array}\right]=\left[\begin{array}{r} V_{1} \\ -V_{2} \end{array}\right]\] image

  • KVL in mesh-1: \[\begin{aligned} -V_{1}+R_{1} i_{1}+R_{3}\left(i_{1}-i_{2}\right)&=0 \\ \Rightarrow \left(R_{1}+R_{3}\right) i_{1}-R_{3} i_{2}&=V_{1} \end{aligned}\]

  • KVL in mesh-2 \[\begin{aligned} R_{2} i_{2}+V_{2}+R_{3}\left(i_{2}-i_{1}\right)&=0 \\ \Rightarrow -R_{3} i_{1}+\left(R_{2}+R_{3}\right) i_{2}&=-V_{2} \end{aligned}\]

Mesh Analysis with Current Sources

image

  • Applying KVL: \[\begin{aligned} -20+6 i_{1}+10 i_{2}+4 i_{2} &=0 \\ \Rightarrow 6 i_{1}+14 i_{2} &=20 \end{aligned}\]

  • Applying KCL: \[\begin{gathered} i_{2}=i_{1}+6 \\ i_{1}=-3.2 \mathrm{~A}, \quad i_{2}=2.8 \mathrm{~A} \end{gathered}\]

Nodal and Mesh Analyses by Inspection

Nodal analysis by Inspection

Mesh analysis by Inspection

Choosing : Nodal Vs Mesh Analysis