Inverse Laplace Transform: From s-domain to Time Domain

Demonstrative Video


Inverse Laplace Transform

  • \[F(s) = \dfrac{N(s)}{D(s)}\]
    has the general form Suppose
  • Roots of \(N(s) = 0\) are known as Zeros of \(F(s)\)

  • Roots of \(D(s) = 0\) are called Poles of \(F(s)\)

  • Use partial fraction expansion to break \(F(s)\) down into simple terms

  • Steps to Find the Inverse Laplace Transform:

    • Decompose \(F(s)\) into simple terms using partial fraction expansion

    • Find inverse of each term by matching entries from Table

  • Three possible forms \(F(s)\) may take and two step approach to each form.

  • \[\begin{aligned} F(s) &=\frac{N(s)}{\left(s+p_{1}\right)\left(s+p_{2}\right) \cdots\left(s+p_{n}\right)}\qquad p_i \neq p_j\\ F(s) &=\frac{k_{1}}{s+p_{1}}+\frac{k_{2}}{s+p_{2}}+\cdots+\frac{k_{n}}{s+p_{n}} \\ & \text{(Assuming degree of }~ N(s)<D(s))\\ \color{magenta}{\textbf{Residues}} \quad &\boxed{k_{i} =\left.\left(s+p_{i}\right) F(s)\right|_{s=-p_{i}}} \\ &\boxed{f(t) =\left(k_{1} e^{-p_{1} t}+k_{2} e^{-p_{2} t}+\cdots+k_{n} e^{-p_{n} t}\right) u(t)} \end{aligned}\]
    Simple Poles :
  • \[\begin{aligned} & F(s) =\frac{k_{n}}{(s+p)^{n}}+\frac{k_{n-1}}{(s+p)^{n-1}}+\cdots+\frac{k_{2}}{(s+p)^{2}}+\frac{k_{1}}{s+p} + \underset{\text{remaining part}}{F_1(s)} \\ & k_{n} =\left.(s+p)^{n} F(s)\right|_{s=-p} \\ & k_{n-1} =\left.\frac{d}{d s}\left[(s+p)^{n} F(s)\right]\right|_{s=-p} \\ & k_{n-2} =\left.\frac{1}{2 !} \frac{d^{2}}{d s^{2}}\left[(s+p)^{n} F(s)\right]\right|_{s=-p} \\ & k_{n-m} =\left.\frac{1}{m !} \frac{d^{m}}{d s^{m}}\left[(s+p)^{n} F(s)\right]\right|_{s=-p} \\ & \mathcal{L}^{-1}{\left[\frac{1}{(s+a)^{n}}\right] } =\frac{t^{n-1} e^{-a t}}{(n-1) !} u(t) \end{aligned}\]
    Repeated Poles :
  • Complex Poles

    • A pair of complex poles is simple if it is not repeated

    • it is a double or multiple pole if repeated.

    • Simple complex poles may be handled the same way as simple real poles, but because complex algebra is involved the result is always cumbersome.

    • An easier approach is a method known as completing the square

\[\begin{aligned} F(s) &=\frac{A_{1} s+A_{2}}{s^{2}+a s+b}+F_{1}(s) \\ F(s) &=\frac{A_{1}(s+\alpha)}{(s+\alpha)^{2}+\beta^{2}}+\frac{B_{1} \beta}{(s+\alpha)^{2}+\beta^{2}}+F_{1}(s) \\ &\boxed{f(t) =\left(A_{1} e^{-\alpha t} \cos \beta t+B_{1} e^{-\alpha t} \sin \beta t\right) u(t)+f_{1}(t) } \end{aligned}\]

\[\begin{aligned} s^{2}+a s+b &=s^{2}+2 \alpha s+\alpha^{2}+\beta^{2} =(s+\alpha)^{2}+\beta^{2} \\ A_{1} s+A_{2} &=A_{1}(s+\alpha)+B_{1} \beta \end{aligned}\]

Problem-1

\[F(s)=\frac{3}{s}-\frac{5}{s+1}+\frac{6}{s^{2}+4}\]
\[\begin{gathered} f(t)=\mathcal{L}^{-1}[F(s)]=\mathcal{L}^{-1}\left(\frac{3}{s}\right)-\mathcal{L}^{-1}\left(\frac{5}{s+1}\right)+\mathcal{L}^{-1}\left(\frac{6}{s^{2}+4}\right) \\ =\left(3-5 e^{-t}+3 \sin 2 t\right) u(t), \quad t \geq 0 \end{gathered}\]
? Find the inverse Laplace Transform of

Problem-2

\[\begin{gathered} F(s) = \frac{s^{2}+12}{s(s+2)(s+3)} =\frac{A}{s}+\frac{B}{s+2}+\frac{C}{s+3} \\ A=\left.s F(s)\right|_{s=0}=\left.\frac{s^{2}+12}{(s+2)(s+3)}\right|_{s=0}=\frac{12}{(2)(3)}=2 \\ B=\left.(s+2) F(s)\right|_{s=-2}=\left.\frac{s^{2}+12}{s(s+3)}\right|_{s=-2}=\frac{4+12}{(-2)(1)}=-8 \\ C=\left.(s+3) F(s)\right|_{s=-3}=\left.\frac{s^{2}+12}{s(s+2)}\right|_{s=-3}=\frac{9+12}{(-3)(-1)}=7 \\ F(s)=\frac{2}{s}-\frac{8}{s+2}+\frac{7}{s+3} \\ f(t)=\left(2-8 e^{-2 t}+7 e^{-3 t}\right) u(t) \end{gathered}\]
? Find the inverse Laplace Transform of

Problem-3

\[\small \begin{gathered} V(s)=\frac{10 s^{2}+4}{s(s+1)(s+2)^{2}} =\frac{A}{s}+\frac{B}{s+1}+\frac{C}{(s+2)^{2}}+\frac{D}{s+2} \\ A=\left.s V(s)\right|_{s=0}=\left.\frac{10 s^{2}+4}{(s+1)(s+2)^{2}}\right|_{s=0}=\frac{4}{(1)(2)^{2}}=1 \\ B=\left.(s+1) V(s)\right|_{s=-1}=\left.\frac{10 s^{2}+4}{s(s+2)^{2}}\right|_{s=-1}=\frac{14}{(-1)(1)^{2}}=-14 \\ C=\left.(s+2)^{2} V(s)\right|_{s=-2}=\left.\frac{10 s^{2}+4}{s(s+1)}\right|_{s=-2}=\frac{44}{(-2)(-1)}=22 \\ D=\left.\frac{d}{d s}\left[(s+2)^{2} V(s)\right]\right|_{s=-2}=\left.\frac{d}{d s}\left(\frac{10 s^{2}+4}{s^{2}+s}\right)\right|_{s=-2} \\ =\left.\frac{\left(s^{2}+s\right)(20 s)-\left(10 s^{2}+4\right)(2 s+1)}{\left(s^{2}+s\right)^{2}}\right|_{s=-2}=\frac{52}{4}=13 \\ V(s)=\frac{1}{s}-\frac{14}{s+1}+\frac{13}{s+2}+\frac{22}{(s+2)^{2}} \\ v(t)=\left(1-14 e^{-t}+13 e^{-2 t}+22 t e^{-2 t}\right) u(t) \end{gathered}\]

Problem-4

\[\begin{aligned} H(s)=& \frac{20}{(s+3)\left(s^{2}+8 s+25\right)} =\frac{A}{s+3}+\frac{B s+C}{\left(s^{2}+8 s+25\right)} \\ A=&\left.(s+3) H(s)\right|_{s=-3}=\left.\frac{20}{s^{2}+8 s+25}\right|_{s=-3}=\frac{20}{10}=2 \\ s^{2}+& 8 s+25=0 \Rightarrow \quad s=-4 \pm j 3 . \\ s = 0 ~~\Rightarrow & \frac{20}{75}=\frac{A}{3}+\frac{C}{25} \quad \Rightarrow 20=25 A+3 C \quad \Rightarrow C=-10 \\ s = 1~~ \Rightarrow & \frac{20}{(4)(34)}=\frac{A}{4}+\frac{B+C}{34} \Rightarrow ~ 20 = 34A+4B+4C ~ \Rightarrow B = -2 \end{aligned}\]
\[\begin{aligned} H(s)=& \frac{2}{s+3}-\frac{2 s+10}{\left(s^{2}+8 s+25\right)}=\frac{2}{s+3}-\frac{2(s+4)+2}{(s+4)^{2}+9} \\ =& \frac{2}{s+3}-\frac{2(s+4)}{(s+4)^{2}+9}-\frac{2}{3} \frac{3}{(s+4)^{2}+9} \\ h(t)=&\left(2 e^{-3 t}-2 e^{-4 t} \cos 3 t-\frac{2}{3} e^{-4 t} \sin 3 t\right) u(t) \\ \Rightarrow h(t)=&\left(2 e^{-3 t}-2.108 e^{-4 t} \cos \left(3 t-18.43^{\circ}\right)\right) u(t) \end{aligned}\]