Instantaneous and Average Power in AC Power Calculations

Demonstrative Video


Power in AC Circuits

  • The most common form of electric power is 50- or 60-Hz ac power.

  • The choice of ac over dc allowed high-voltage power transmission from the power generating plant to the consumer.

  • Instantaneous Power : \(p(t)\) absorbed by an element is the product of the instantaneous voltage \(v(t)\) across the element and the instantaneous current \(i(t)\) through it.

\[\begin{aligned} p(t)=& v(t) i(t) \\ v(t)=& V_{m} \cos \left(\omega t+\theta_{v}\right) \\ i(t)=& I_{m} \cos \left(\omega t+\theta_{i}\right) \\ p(t)=& v(t) i(t) \\ =& V_{m} I_{m} \cos \left(\omega t+\theta_{v}\right) \cos \left(\omega t+\theta_{i}\right) \\ &\boxed{p(t)= \frac{1}{2} V_{m} I_{m} \cos \left(\theta_{v}-\theta_{i}\right)+\frac{1}{2} V_{m} I_{m} \cos \left(2 \omega t+\theta_{v}+\theta_{i}\right)} \\ & \cos A \cos B=\frac{1}{2}[\cos (A-B)+\cos (A+B)] \end{aligned}\]
  • Instantaneous power has two parts.

    • The first part is constant or time independent. Its value depends on the phase difference between the voltage and the current.

    • The second part is a sinusoidal function whose frequency is \(2\omega\)

    • \(p(t)\) is periodic with \(T=2\pi/\omega\) is the period

  • When \(p(t)\) is positive, power is absorbed by the circuit.

  • When \(p(t)\) is negative, power is absorbed by the source; power is transferred from the circuit to the source.

image
  • This is because of the storage elements (L or C) in the circuit.

  • \(p(t)\) changes with time and difficult to measure, hence average power is more convenient.

  • Watt-meter for measuring power responds to average power.


Average Power

  • \[\begin{aligned} P=& \frac{1}{T} \int_{0}^{T} p(t) d t \\ P=& \frac{1}{T} \int_{0}^{T} \frac{1}{2} V_{m} I_{m} \cos \left(\theta_{v}-\theta_{i}\right) d t +\frac{1}{T} \int_{0}^{T} \frac{1}{2} V_{m} I_{m} \cos \left(2 \omega t+\theta_{v}+\theta_{i}\right) d t \\ =& \frac{1}{2} V_{m} I_{m} \cos \left(\theta_{v}-\theta_{i}\right) \frac{1}{T} \int_{0}^{T} d t +\frac{1}{2} V_{m} I_{m} \frac{1}{T} \int_{0}^{T} \cos \left(2 \omega t+\theta_{v}+\theta_{i}\right) d t \end{aligned}\]
    Average of the instantaneous power over one period.
  • The first integrand is constant and second integrand is a sinusoid.

  • The average of a sinusoid over its period is zero because the area under the sinusoid during a positive half-cycle is cancelled by the area under it during the following negative half-cycle.

\[\boxed{P=\frac{1}{2} V_{m} I_{m} \cos \left(\theta_{v}-\theta_{i}\right)}\]
\[\begin{aligned} &\boxed{p(t)= \frac{1}{2} V_{m} I_{m} \cos \left(\theta_{v}-\theta_{i}\right)+\frac{1}{2} V_{m} I_{m} \cos \left(2 \omega t+\theta_{v}+\theta_{i}\right)} \end{aligned}\]
  • \(p(t)\) is time-varying while \(P\) does not depend on time

  • \(p(t)\) depends on \(v(t)\) and \(i(t)\) in time-domain

  • \[\begin{aligned} &\mathbf{V}=V_{m} \angle \theta_{v} \text { and } \mathbf{I}=I_{m} \angle \theta_{i} \\ &\frac{1}{2} \mathbf{V I}^{*}= \frac{1}{2} V_{m} I_{m} \angle \theta_{v}-\theta_{i} \\ &= \frac{1}{2} V_{m} I_{m}\left[\cos \left(\theta_{v}-\theta_{i}\right)+j \sin \left(\theta_{v}-\theta_{i}\right)\right]\\ &\boxed{P=\frac{1}{2} \operatorname{Re}\left[\mathbf{V I}^{*}\right]= \frac{1}{2} V_{m} I_{m} \cos( \theta_{v}-\theta_{i} ) } \end{aligned}\]
    \(P\)
  • \[P = \dfrac{1}{2}V_mI_m = \dfrac{1}{2} I_m^2R=\dfrac{1}{2}|\mathbf{I}|^2R\]
    \(|\mathrm{I}|^2 = \mathrm{I} \times \mathrm{I^{\ast}}\) Purely resistive circuit:
  • \[P = \dfrac{1}{2}V_mI_m \cos 90^{\circ} = 0\]
    Purely reactive circuit:
  • A resistive load (\(R\) ) absorbs power at all times, while a reactive load (\(L\) or \(C\) ) absorbs zero average power.


Problem

Given \(v(t)=120 \cos \left(377 t+45^{\circ}\right) \mathrm{V} \quad\) and \(\quad i(t)=10 \cos \left(377 t-10^{\circ}\right) \mathrm{A}\) find the instantaneous power and the average power absorbed by the passive linear network

Solution:

\[p=v i=1200 \cos \left(377 t+45^{\circ}\right) \cos \left(377 t-10^{\circ}\right)\]
\[p(t)=344.2+600 \cos \left(754 t+35^{\circ}\right) \mathrm{W}\]
\[p=600\left[\cos \left(754 t+35^{\circ}\right)+\cos 55^{\circ}\right]\]
\[\cos A \cos B=\frac{1}{2}[\cos (A+B)+\cos (A-B)]\]
The instantaneous power is given by
\[\begin{aligned} P=\frac{1}{2} V_{m} I_{m} \cos \left(\theta_{v}-\theta_{i}\right) &=\frac{1}{2} 120(10) \cos \left[45^{\circ}-\left(-10^{\circ}\right)\right] \\ &=600 \cos 55^{\circ}=344.2 \mathrm{~W} \end{aligned}\]
\(p(t)\)The average power is

Maximum Average Power Transfer

  • Maximum Power Transfer in DC Circuits \(\Rightarrow~R_L = R_{TH}\)

  • \[\begin{aligned} \mathbf{Z}_{\mathrm{Th}} &=R_{\mathrm{Th}}+j X_{\mathrm{Th}} \qquad \mathbf{Z}_{L} =R_{L}+j X_{L} \\ \mathbf{I} &=\frac{\mathbf{V}_{\mathrm{Th}}}{\mathbf{Z}_{\mathrm{Th}}+\mathbf{Z}_{L}}=\frac{\mathbf{V}_{\mathrm{Th}}}{\left(R_{\mathrm{Th}}+j X_{\mathrm{Th}}\right)+\left(R_{L}+j X_{L}\right)} \\ P &=\frac{1}{2}|\mathbf{I}|^{2} R_{L}=\frac{\left|\mathbf{V}_{\mathrm{Th}}\right|^{2} R_{L} / 2}{\left(R_{\mathrm{Th}}+R_{L}\right)^{2}+\left(X_{\mathrm{Th}}+X_{L}\right)^{2}} \end{aligned}\]
    For AC Circuits:
\[\begin{aligned} \frac{\partial P}{\partial X_{L}} &=-\frac{\left[\left(R_{\mathrm{Th}}+R_{L}\right)^{2}+\left(X_{\mathrm{Th}}+X_{L}\right)^{2}\right]^{2}}{\left|\mathbf{V}_{\mathrm{Th}}\right|^{2} R_{L}\left(X_{\mathrm{Th}}+X_{L}\right)} \\ \frac{\partial P}{\partial R_{L}} &=\frac{\left|\mathbf{V}_{\mathrm{Th}}\right|^{2}\left[\left(R_{\mathrm{Th}}+R_{L}\right)^{2}+\left(X_{\mathrm{Th}}+X_{L}\right)^{2}-2 R_{L}\left(R_{\mathrm{Th}}+R_{L}\right)\right]}{2\left[\left(R_{\mathrm{Th}}+R_{L}\right)^{2}+\left(X_{\mathrm{Th}}+X_{L}\right)^{2}\right]^{2}} \\ X_{L} &=-X_{\mathrm{Th}} ~~ \Leftarrow \left(\frac{\partial P}{\partial X_{L}}=0\right)\\ R_{L} &=\sqrt{R_{\mathrm{Th}}^{2}+\left(X_{\mathrm{Th}}+X_{L}\right)^{2}} ~~ \Leftarrow \left(\frac{\partial P}{\partial R_{L}}=0\right)\\ &\boxed{\mathbf{Z}_{L} =R_{L}+j X_{L}=R_{\mathrm{Th}}-j X_{\mathrm{Th}}=\mathbf{Z}_{\mathrm{Th}}^{*}} \end{aligned}\]
  • \[\begin{aligned} &\boxed{P_{\max } =\frac{\left|\mathbf{V}_{\mathrm{Th}}\right|^{2}}{8 R_{\mathrm{Th}}}} \qquad R_{L} =\sqrt{R_{\mathrm{Th}}^{2}+X_{\mathrm{Th}}^{2}}=\left|\mathbf{Z}_{\mathrm{Th}}\right|~\Leftarrow ~(\text{for}~X_L=0) \end{aligned}\]
    . must be equal to the complex conjugate of For MPT,

Problem

Determine \(Z_L\) that maximizes the average power drawn from the circuit. What is \(P_{\text{max}}\)?

image
\[\begin{aligned} \mathbf{Z}_{\mathrm{Th}} &=j 5+4 \|(8-j 6)=j 5+\frac{4(8-j 6)}{4+8-j 6}=2.933+j 4.467 \Omega \\ \mathbf{V}_{\mathrm{Th}} &=\frac{8-j 6}{4+8-j 6}(10)=7.454 L-10.3^{\circ} \mathrm{V} \\ \mathbf{Z}_{L} &=\mathbf{Z}_{\mathrm{Th}}^{*}=2.933-j 4.467 \Omega \\ P_{\max } &=\frac{\left|\mathbf{V}_{\mathrm{Th}}\right|^{2}}{8 R_{\mathrm{Th}}}=\frac{(7.454)^{2}}{8(2.933)}=2.368 \mathrm{~W} \end{aligned}\]

Effective or RMS Value

  • The idea of effective value arises from the need to measure the effectiveness of a voltage or current source in delivering power to a resistive load.

  • The effective value of a periodic current is the dc current that delivers the same average power to a resistor as the periodic current.

\[\begin{aligned} &P=\frac{1}{T} \int_{0}^{T} i^{2} R d t=\frac{R}{T} \int_{0}^{T} i^{2} d t\\ &P=I_{\text {eff }}^{2} R\\ &I_{\mathrm{eff}}=\sqrt{\frac{1}{T} \int_{0}^{T} i^{2} d t}\\ &V_{\mathrm{eff}}=\sqrt{\frac{1}{T} \int_{0}^{T} v^{2} d t}\\ &I_{\mathrm{eff}}=I_{\mathrm{rms}}, \quad V_{\mathrm{eff}}=V_{\mathrm{rms}} \end{aligned}\]
\[\begin{aligned} &\boxed{X_{\mathrm{rms}}=\sqrt{\frac{1}{T} \int_{0}^{T} x^{2} d t}} \quad \text{RMS of a periodic function}~x(t)\\ &I_{\mathrm{rms}}=\sqrt{\frac{1}{T} \int_{0}^{T} I_{m}^{2} \cos ^{2} \omega t d t}=\sqrt{\frac{I_{m}^{2}}{T} \int_{0}^{T} \frac{1}{2}(1+\cos 2 \omega t) d t}=\frac{I_{m}}{\sqrt{2}}\\ &V_{\mathrm{rms}}=\frac{V_{m}}{\sqrt{2}} \quad \Leftarrow~(v(t)=V_m\cos(\omega t))\\ &P=\frac{1}{2} V_{m} I_{m} \cos \left(\theta_{v}-\theta_{i}\right)=\frac{V_{m}}{\sqrt{2}} \frac{I_{m}}{\sqrt{2}} \cos \left(\theta_{v}-\theta_{i}\right)\\ &\boxed{P =V_{\mathrm{rms}} I_{\mathrm{rms}} \cos \left(\theta_{v}-\theta_{i}\right)}\\ &P=I_{\mathrm{rms}}^{2} R=\frac{V_{\mathrm{rms}}^{2}}{R} \end{aligned}\]
  • When a sinusoidal voltage or current is specified, it is often in terms of its maximum (or peak) value or its rms value, since its average value is zero.

  • The power industries specify phasor magnitudes in terms of their rms values rather than peak values.

  • For instance, the 110 V available at every household is the rms value of the voltage from the power company.

  • It is convenient in power analysis to express voltage and current in their rms values.

  • Also, analog voltmeters and ammeters are designed to read directly the rms value of voltage and current, respectively.


Problem-1

Determine the rms value of the current waveform If the current is passed through a \(2~\Omega\) resistor, find the average power absorbed by the resistor.

image
\[i(t)=\left\{\begin{aligned} 5 t, & 0<t<2 \\ -10, & 2<t<4 \end{aligned}\right.\]
\[\begin{aligned} I_{\mathrm{rms}} &=\sqrt{\frac{1}{T} \int_{0}^{T} i^{2} d t}=\sqrt{\frac{1}{4}\left[\int_{0}^{2}(5 t)^{2} d t+\int_{2}^{4}(-10)^{2} d t\right]} \\ &=\sqrt{\frac{1}{4}\left[\left.25 \frac{t^{3}}{3}\right|_{0} ^{2}+\left.100 t\right|_{2} ^{4}\right]}=\sqrt{\frac{1}{4}\left(\frac{200}{3}+200\right)}=8.165 \mathrm{~A} \end{aligned}\]
. Over a period, we can write Solution: The period is
\[P=I_{\mathrm{rms}}^{2} R=(8.165)^{2}(2)=133.3 \mathrm{~W}\]
resistor is The power absorbed by a

Problem-2

The waveform shown is a half-wave rectified sine wave. Find the rms value and the amount of average power dissipated in \(10~\Omega\) resistor.

image
\[v(t)= \begin{cases}10 \sin t, & 0<t<\pi \\ 0, & \pi<t<2 \pi\end{cases}\]
, and Solution: The period is
\[V_{\mathrm{rms}}^{2}=\frac{1}{T} \int_{0}^{T} v^{2}(t) d t=\frac{1}{2 \pi}\left[\int_{0}^{\pi}(10 \sin t)^{2} d t+\int_{\pi}^{2 \pi} 0^{2} d t\right]\]
\[P=\frac{V_{\mathrm{rms}}^{2}}{R}=\frac{5^{2}}{10}=2.5 \mathrm{~W}\]
\[\begin{aligned} V_{\mathrm{rms}}^{2} &=\frac{1}{2 \pi} \int_{0}^{\pi} \frac{100}{2}(1-\cos 2 t) d t=\left.\frac{50}{2 \pi}\left(t-\frac{\sin 2 t}{2}\right)\right|_{0} ^{\pi} \\ &=\frac{50}{2 \pi}\left(\pi-\frac{1}{2} \sin 2 \pi-0\right)=25, \quad V_{\mathrm{rms}}=5 \mathrm{~V} \end{aligned}\]
\(\sin ^{2} t=\frac{1}{2}(1-\cos 2 t)\)The rms value is obtained as

Apparent Power and Power Factor

\[\begin{aligned} &v(t)=V_{m} \cos \left(\omega t+\theta_{v}\right) \quad \text { and } \quad i(t)=I_{m} \cos \left(\omega t+\theta_{i}\right) \\ &P=\frac{1}{2} V_{m} I_{m} \cos \left(\theta_{v}-\theta_{i}\right) \\ &P=V_{\mathrm{rms}} I_{\mathrm{rms}} \cos \left(\theta_{v}-\theta_{i}\right)=S \cos \left(\theta_{v}-\theta_{i}\right) \\ &\boxed{S=V_{\mathrm{rms}} I_{\mathrm{rms}}} \end{aligned}\]
  • The average power is a product of two terms.

  • The product \(V_{\mathrm{rms}} I_{\mathrm{rms}}\) is known as the apparent power, S.

  • The factor \(\cos(\theta_v-\theta_i)\) is called the power factor (pf).

  • The apparent power is so called because it seems apparent that the power should be the voltage-current product, by analogy with dc resistive circuits.

  • It is measured in volt-amperes or VA to distinguish it from the average or real power, which is measured in watts.

  • \[\mathrm{pf} = \dfrac{P}{S} = \cos(\theta_{v}-\theta_{i})\]
    , whose value ranges between zero and unity. The power factor is
  • The angle \((\theta_{v}-\theta_{i})\) is called the power factor angle.

  • For purely resistive load \(pf=1\) and for purely reactive load \(pf=0\). In between it is either lagging or leading pf.

  • The power factor angle is equal to the angle of the load impedance if \(\mathbf{V}\) is the voltage across the load and \(\mathbf{I}\) is the current through it.

\[\begin{aligned} &\mathbf{Z}=\frac{\mathbf{V}}{\mathbf{I}}=\frac{V_{m} \angle \theta_{v}}{I_{m} \angle \theta_{i}}=\frac{V_{m}}{I_{m}} \angle \theta_{v}-\theta_{i} \\ &\mathbf{V}_{\mathrm{rms}}=\frac{\mathbf{V}}{\sqrt{2}}=V_{\mathrm{rms}} \angle \frac{\theta_{v}}{\mathrm{I}} \\ &\mathbf{I}_{\mathrm{rms}}=\frac{\mathbf{I}}{\sqrt{2}}=I_{\mathrm{rms}} \angle \theta_{i} \\ &\mathbf{Z}=\frac{\mathbf{V}}{\mathbf{I}}=\frac{\mathbf{V}_{\mathrm{rms}}}{\mathbf{I}_{\mathrm{rms}}}=\frac{V_{\mathrm{rms}}}{I_{\mathrm{rms}}} \angle \theta_{v}-\theta_{i} \end{aligned}\]

Problem-1

  • A series-connected load draws a current \(i(t)=4 \cos \left(100 \pi t+10^{\circ}\right) \mathrm{A}\) when the applied voltage is \(v(t)=120 \cos \left(100 \pi t-20^{\circ}\right) \mathrm{V}\). Find the apparent power and the power factor of the load. Determine the element values that form the series-connected load.

  • \[S=V_{\mathrm{rms}} I_{\mathrm{rms}}=\frac{120}{\sqrt{2}} \frac{4}{\sqrt{2}}=240 \mathrm{VA}\]
    Solution:
  • \[\mathrm{pf}=\cos \left(\theta_{v}-\theta_{i}\right)=\cos \left(-20^{\circ}-10^{\circ}\right)=0.866 \quad \text { (leading) }\]
    The power factor is
  • \[\begin{aligned} \mathbf{Z}=\frac{\mathbf{V}}{\mathbf{I}} &=\frac{120 \angle -20^{\circ}}{4 \angle 10^{\circ}}=30 \angle -30^{\circ}=25.98-j 15 \Omega \\ \mathrm{pf} &=\cos \left(-30^{\circ}\right)=0.866 \quad \text { (leading) } \end{aligned}\]
    The pf is leading because the current leads the voltage. The pf may also be obtained from the load impedance.
  • \[X_{C}=-15=-\frac{1}{\omega C}\]
    \[C=\frac{1}{15 \omega}=\frac{1}{15 \times 100 \pi}=212.2 \mu \mathrm{F}\]
    resistor in series with a capacitor with can be modeled by a The load impedance