Instantaneous and Average Power in AC Power Calculations

Demonstrative Video


Power in AC Circuits

\[\begin{aligned} p(t)=& v(t) i(t) \\ v(t)=& V_{m} \cos \left(\omega t+\theta_{v}\right) \\ i(t)=& I_{m} \cos \left(\omega t+\theta_{i}\right) \\ p(t)=& v(t) i(t) \\ =& V_{m} I_{m} \cos \left(\omega t+\theta_{v}\right) \cos \left(\omega t+\theta_{i}\right) \\ &\boxed{p(t)= \frac{1}{2} V_{m} I_{m} \cos \left(\theta_{v}-\theta_{i}\right)+\frac{1}{2} V_{m} I_{m} \cos \left(2 \omega t+\theta_{v}+\theta_{i}\right)} \\ & \cos A \cos B=\frac{1}{2}[\cos (A-B)+\cos (A+B)] \end{aligned}\]

  • When \(p(t)\) is positive, power is absorbed by the circuit.

  • When \(p(t)\) is negative, power is absorbed by the source; power is transferred from the circuit to the source.

image


Average Power

\[\boxed{P=\frac{1}{2} V_{m} I_{m} \cos \left(\theta_{v}-\theta_{i}\right)}\]

\[\begin{aligned} &\boxed{p(t)= \frac{1}{2} V_{m} I_{m} \cos \left(\theta_{v}-\theta_{i}\right)+\frac{1}{2} V_{m} I_{m} \cos \left(2 \omega t+\theta_{v}+\theta_{i}\right)} \end{aligned}\]


Problem

Given \(v(t)=120 \cos \left(377 t+45^{\circ}\right) \mathrm{V} \quad\) and \(\quad i(t)=10 \cos \left(377 t-10^{\circ}\right) \mathrm{A}\) find the instantaneous power and the average power absorbed by the passive linear network

Solution:

The instantaneous power is given by \[p=v i=1200 \cos \left(377 t+45^{\circ}\right) \cos \left(377 t-10^{\circ}\right)\] Applying the trigonometric identity \[\cos A \cos B=\frac{1}{2}[\cos (A+B)+\cos (A-B)]\] gives \[p=600\left[\cos \left(754 t+35^{\circ}\right)+\cos 55^{\circ}\right]\] or \[p(t)=344.2+600 \cos \left(754 t+35^{\circ}\right) \mathrm{W}\]

The average power is \[\begin{aligned} P=\frac{1}{2} V_{m} I_{m} \cos \left(\theta_{v}-\theta_{i}\right) &=\frac{1}{2} 120(10) \cos \left[45^{\circ}-\left(-10^{\circ}\right)\right] \\ &=600 \cos 55^{\circ}=344.2 \mathrm{~W} \end{aligned}\] which is the constant part of \(p(t)\).


Maximum Average Power Transfer

\[\begin{aligned} \frac{\partial P}{\partial X_{L}} &=-\frac{\left[\left(R_{\mathrm{Th}}+R_{L}\right)^{2}+\left(X_{\mathrm{Th}}+X_{L}\right)^{2}\right]^{2}}{\left|\mathbf{V}_{\mathrm{Th}}\right|^{2} R_{L}\left(X_{\mathrm{Th}}+X_{L}\right)} \\ \frac{\partial P}{\partial R_{L}} &=\frac{\left|\mathbf{V}_{\mathrm{Th}}\right|^{2}\left[\left(R_{\mathrm{Th}}+R_{L}\right)^{2}+\left(X_{\mathrm{Th}}+X_{L}\right)^{2}-2 R_{L}\left(R_{\mathrm{Th}}+R_{L}\right)\right]}{2\left[\left(R_{\mathrm{Th}}+R_{L}\right)^{2}+\left(X_{\mathrm{Th}}+X_{L}\right)^{2}\right]^{2}} \\ X_{L} &=-X_{\mathrm{Th}} ~~ \Leftarrow \left(\frac{\partial P}{\partial X_{L}}=0\right)\\ R_{L} &=\sqrt{R_{\mathrm{Th}}^{2}+\left(X_{\mathrm{Th}}+X_{L}\right)^{2}} ~~ \Leftarrow \left(\frac{\partial P}{\partial R_{L}}=0\right)\\ &\boxed{\mathbf{Z}_{L} =R_{L}+j X_{L}=R_{\mathrm{Th}}-j X_{\mathrm{Th}}=\mathbf{Z}_{\mathrm{Th}}^{*}} \end{aligned}\]

Problem

Determine \(Z_L\) that maximizes the average power drawn from the circuit. What is \(P_{\text{max}}\)? image

image \[\begin{aligned} \mathbf{Z}_{\mathrm{Th}} &=j 5+4 \|(8-j 6)=j 5+\frac{4(8-j 6)}{4+8-j 6}=2.933+j 4.467 \Omega \\ \mathbf{V}_{\mathrm{Th}} &=\frac{8-j 6}{4+8-j 6}(10)=7.454 L-10.3^{\circ} \mathrm{V} \\ \mathbf{Z}_{L} &=\mathbf{Z}_{\mathrm{Th}}^{*}=2.933-j 4.467 \Omega \\ P_{\max } &=\frac{\left|\mathbf{V}_{\mathrm{Th}}\right|^{2}}{8 R_{\mathrm{Th}}}=\frac{(7.454)^{2}}{8(2.933)}=2.368 \mathrm{~W} \end{aligned}\]


Effective or RMS Value

\[\begin{aligned} &P=\frac{1}{T} \int_{0}^{T} i^{2} R d t=\frac{R}{T} \int_{0}^{T} i^{2} d t\\ &P=I_{\text {eff }}^{2} R\\ &I_{\mathrm{eff}}=\sqrt{\frac{1}{T} \int_{0}^{T} i^{2} d t}\\ &V_{\mathrm{eff}}=\sqrt{\frac{1}{T} \int_{0}^{T} v^{2} d t}\\ &I_{\mathrm{eff}}=I_{\mathrm{rms}}, \quad V_{\mathrm{eff}}=V_{\mathrm{rms}} \end{aligned}\] image

\[\begin{aligned} &\boxed{X_{\mathrm{rms}}=\sqrt{\frac{1}{T} \int_{0}^{T} x^{2} d t}} \quad \text{RMS of a periodic function}~x(t)\\ &I_{\mathrm{rms}}=\sqrt{\frac{1}{T} \int_{0}^{T} I_{m}^{2} \cos ^{2} \omega t d t}=\sqrt{\frac{I_{m}^{2}}{T} \int_{0}^{T} \frac{1}{2}(1+\cos 2 \omega t) d t}=\frac{I_{m}}{\sqrt{2}}\\ &V_{\mathrm{rms}}=\frac{V_{m}}{\sqrt{2}} \quad \Leftarrow~(v(t)=V_m\cos(\omega t))\\ &P=\frac{1}{2} V_{m} I_{m} \cos \left(\theta_{v}-\theta_{i}\right)=\frac{V_{m}}{\sqrt{2}} \frac{I_{m}}{\sqrt{2}} \cos \left(\theta_{v}-\theta_{i}\right)\\ &\boxed{P =V_{\mathrm{rms}} I_{\mathrm{rms}} \cos \left(\theta_{v}-\theta_{i}\right)}\\ &P=I_{\mathrm{rms}}^{2} R=\frac{V_{\mathrm{rms}}^{2}}{R} \end{aligned}\]


Problem-1

Determine the rms value of the current waveform If the current is passed through a \(2~\Omega\) resistor, find the average power absorbed by the resistor. image

Solution: The period is \(T=4\). Over a period, we can write \[i(t)=\left\{\begin{aligned} 5 t, & 0<t<2 \\ -10, & 2<t<4 \end{aligned}\right.\] The rms value is \[\begin{aligned} I_{\mathrm{rms}} &=\sqrt{\frac{1}{T} \int_{0}^{T} i^{2} d t}=\sqrt{\frac{1}{4}\left[\int_{0}^{2}(5 t)^{2} d t+\int_{2}^{4}(-10)^{2} d t\right]} \\ &=\sqrt{\frac{1}{4}\left[\left.25 \frac{t^{3}}{3}\right|_{0} ^{2}+\left.100 t\right|_{2} ^{4}\right]}=\sqrt{\frac{1}{4}\left(\frac{200}{3}+200\right)}=8.165 \mathrm{~A} \end{aligned}\]

The power absorbed by a \(2-\Omega\) resistor is \[P=I_{\mathrm{rms}}^{2} R=(8.165)^{2}(2)=133.3 \mathrm{~W}\]


Problem-2

The waveform shown is a half-wave rectified sine wave. Find the rms value and the amount of average power dissipated in \(10~\Omega\) resistor. image

Solution: The period is \(T=2 \pi\), and \[v(t)= \begin{cases}10 \sin t, & 0<t<\pi \\ 0, & \pi<t<2 \pi\end{cases}\]

The rms value is obtained as \[V_{\mathrm{rms}}^{2}=\frac{1}{T} \int_{0}^{T} v^{2}(t) d t=\frac{1}{2 \pi}\left[\int_{0}^{\pi}(10 \sin t)^{2} d t+\int_{\pi}^{2 \pi} 0^{2} d t\right]\] But \(\sin ^{2} t=\frac{1}{2}(1-\cos 2 t)\). Hence, \[\begin{aligned} V_{\mathrm{rms}}^{2} &=\frac{1}{2 \pi} \int_{0}^{\pi} \frac{100}{2}(1-\cos 2 t) d t=\left.\frac{50}{2 \pi}\left(t-\frac{\sin 2 t}{2}\right)\right|_{0} ^{\pi} \\ &=\frac{50}{2 \pi}\left(\pi-\frac{1}{2} \sin 2 \pi-0\right)=25, \quad V_{\mathrm{rms}}=5 \mathrm{~V} \end{aligned}\] The average power absorbed is \[P=\frac{V_{\mathrm{rms}}^{2}}{R}=\frac{5^{2}}{10}=2.5 \mathrm{~W}\]


Apparent Power and Power Factor

\[\begin{aligned} &v(t)=V_{m} \cos \left(\omega t+\theta_{v}\right) \quad \text { and } \quad i(t)=I_{m} \cos \left(\omega t+\theta_{i}\right) \\ &P=\frac{1}{2} V_{m} I_{m} \cos \left(\theta_{v}-\theta_{i}\right) \\ &P=V_{\mathrm{rms}} I_{\mathrm{rms}} \cos \left(\theta_{v}-\theta_{i}\right)=S \cos \left(\theta_{v}-\theta_{i}\right) \\ &\boxed{S=V_{\mathrm{rms}} I_{\mathrm{rms}}} \end{aligned}\]

\[\begin{aligned} &\mathbf{Z}=\frac{\mathbf{V}}{\mathbf{I}}=\frac{V_{m} \angle \theta_{v}}{I_{m} \angle \theta_{i}}=\frac{V_{m}}{I_{m}} \angle \theta_{v}-\theta_{i} \\ &\mathbf{V}_{\mathrm{rms}}=\frac{\mathbf{V}}{\sqrt{2}}=V_{\mathrm{rms}} \angle \frac{\theta_{v}}{\mathrm{I}} \\ &\mathbf{I}_{\mathrm{rms}}=\frac{\mathbf{I}}{\sqrt{2}}=I_{\mathrm{rms}} \angle \theta_{i} \\ &\mathbf{Z}=\frac{\mathbf{V}}{\mathbf{I}}=\frac{\mathbf{V}_{\mathrm{rms}}}{\mathbf{I}_{\mathrm{rms}}}=\frac{V_{\mathrm{rms}}}{I_{\mathrm{rms}}} \angle \theta_{v}-\theta_{i} \end{aligned}\]


Problem-1