Complex Power Analysis in AC Circuits

Demonstrative Video


Complex Power

  • Complex power is important in power analysis because it contains all the information pertaining to the power absorbed by a given load.

image

\[\begin{aligned} & \mathbf{V}=V_m\angle \theta_v \qquad \mathbf{I}=I_m\angle \theta_i\\ &\mathrm{S}=\frac{1}{2} \mathrm{VI}^{*}\qquad \mathrm{S}=\mathrm{V}_{\mathrm{rms}} \mathbf{I}_{\mathrm{rm}}^{*}\\ &\mathbf{V}_{\text {rms }}=\frac{\mathbf{V}}{\sqrt{2}}=V_{\text {rms }} \angle \theta_{v} \qquad \mathbf{I}_{\text {rms }}=\frac{\mathbf{I}}{\sqrt{2}}=I_{\text {rms }} / \theta_{i}\\ &\mathrm{S}=V_{\mathrm{rms}} I_{\mathrm{rms}} \angle{ \theta_{v}-\theta_{i}}\quad =V_{\mathrm{rms}} I_{\mathrm{rms}} \cos \left(\theta_{v}-\theta_{i}\right)+j V_{\mathrm{rms}} I_{\mathrm{rms}} \sin \left(\theta_{v}-\theta_{i}\right)\\ &\mathbf{Z}=\frac{\mathbf{V}}{\mathbf{I}}=\frac{\mathbf{V}_{\mathrm{rms}}}{\mathbf{I}_{\mathrm{rms}}}=\frac{V_{\mathrm{rms}}}{I_{\mathrm{rms}}} \angle {\theta_{v}-\theta_{i}}\\ &\boxed{\mathbf{S}=I_{\mathrm{rms}}^{2} \mathbf{Z}=\frac{V_{\mathrm{rms}}^{2}}{\mathbf{Z}^{*}}=\mathbf{V}_{\mathrm{rms}} \mathbf{I}_{\mathrm{rms}}^{*}} \end{aligned}\]

\[\begin{aligned} \color{magenta}{\text{Complex-power}}~& \mathbf{S}=I_{\mathrm{rms}}^{2}(R+j X)=P+j Q\\ \color{brown}{\text{Real-power}}~&P=\operatorname{Re}(\mathrm{S})=I_{\mathrm{rm}_{\mathrm{S}}}^{2} R\\ \color{teal}{\text{Reactive-power}}~&Q=\operatorname{Im}(\mathrm{S})=I_{\mathrm{rms}}^{2} X\\ & P = V_{rms}I_{rms}\cos(\theta_v-\theta_i) \quad Q = V_{rms}I_{rms}\sin(\theta_v-\theta_i) \end{aligned}\]

  1. \(Q=0\) for resistive loads (unity pf)

  2. \(Q<0\) for capacitive loads (leading pf)

  3. \(Q>0\) for inductive loads (lagging pf)

image


Revision

\[\begin{aligned} \text { Complex Power }&=\mathbf{S}=P+j Q=\mathbf{V}_{\mathrm{rms}}\left(\mathbf{I}_{\mathrm{rms}}\right)^{*} = \mathbf{V}_{\mathrm{rms}} \mathbf{I}_{\mathrm{rms}} \angle \theta_{v}-\theta_{i} \\ \text { Apparent Power }&=S=|\mathbf{S}|=\mathbf{V}_{\mathrm{rms}} \mathbf{I}_{\mathrm{rms}}=\sqrt{P^{2}+Q^{2}} \\ \text { Real Power }&=P=\operatorname{Re}(\mathbf{S})=S \cos \left(\theta_{v}-\theta_{i}\right) \\ \text { Reactive Power }&=Q=\operatorname{Im}(\mathbf{S})=S \sin \left(\theta_{v}-\theta_{i}\right) \\ \text { Power Factor }&=\frac{P}{S}=\cos \left(\theta_{v}-\theta_{i}\right) \end{aligned}\]


Complex Power Problems

Problem-1


Problem-2