Fundamentals of Capacitors

Demonstrative Video


Introduction


Capacitance


Capacitance of the Parallel-Plate Capacitor

image


Capacitance & Fluid-Flow Analogy

image


Commercial available capacitors

image


Important properties of a capacitor

image


Stored Charge & Current in Terms of Voltage


Voltage in Terms of Current

\[\begin{aligned} &i(t)=C \frac{d v(t)}{d t} \\ &q(t)=\int_{t_{0}}^{t} i(t) d t+q\left(t_{0}\right) \\ &v(t)=\frac{1}{C} \int_{t_{0}}^{t} i(t) d t+\frac{q\left(t_{0}\right)}{C} \\ &v(t)=\frac{1}{C} \int_{t_{0}}^{t} i(t) d t+v\left(t_{0}\right) \end{aligned}\]


Stored Energy in a Capacitor

\[\begin{aligned} p(t) &=v(t) i(t) \\ p(t) &=C v \frac{d v}{d t} \\ w(t) &=\int_{t_{0}}^{t} p(t) d t \\ w(t) &=\int_{t_{0}}^{t} C v \frac{d v}{d t} d t w(t) =\int_{0}^{v(t)} C v d v \\ w(t) &=\frac{1}{2} C v^{2}(t) \\ w(t) &=\frac{1}{2} v(t) q(t) \\ &=\frac{q^{2}(t)}{2 C} \end{aligned}\]


Capacitances in Series and Parallel

\[\begin{gathered} i_{1}=C_{1} \frac{d v}{d t} \quad i_{2}=C_{2} \frac{d v}{d t} \quad i_{3}=C_{3} \frac{d v}{d t} \\ i=i_{1}+i_{2}+i_{3} \\ i=C_{1} \frac{d v}{d t}+C_{2} \frac{d v}{d t}+C_{3} \frac{d v}{d t} \\ i=\left(C_{1}+C_{2}+C_{3}\right) \frac{d v}{d t} \\ C_{\mathrm{eq}}=C_{1}+C_{2}+C_{3} \\ i=C_{\mathrm{eq}} \frac{d v}{d t} \end{gathered}\]