Balanced Three-Phase Power Systems

Demonstrative Video


Power in a Balanced System

vAN=2VpcosωtvBN=2Vpcos(ωt120)vCN=2Vpcos(ωt+120)vAN=2VpcosωtvBN=2Vpcos(ωt120)vCN=2Vpcos(ωt+120)
p=pa+pb+pc=vANia+vBNib+vCNic=2VpIp[cosωtcos(ωtθ)+cos(ωt120)cos(ωtθ120)+  cos(ωt+120)cos(ωtθ+120)]=VpIp[3cosθ+cos(2ωtθ)+cos(2ωtθ240)+cos(2ωtθ+240)]=VpIp[3cosθ+cosα+cosαcos240+sinαsin240+cosαcos240sinαsin240]=VpIp[3cosθ+cosα+2(12)cosα]=3VpIpcosθ  α=2ωtθ
Note:

Important Points:

  • Thus the total instantaneous power in a balanced 3ϕ system is constant—it does not change with time as the instantaneous power of each phase does.

  • This result is true whether the load is Y- or Δ-connected.

  • This is one important reason for using a three-phase system to generate and distribute power.

Pp=VpIpcosθQp=VpIpsinθSp=VpIpSp=Pp+jQp=VpIpP=Pa+Pb+Pc=3Pp=3VpIpcosθ=3VLILcosθ
image
Ploss =2I2LR=2RP2LV2LPloss =3(IL)2R=3RP2L3V2L=RP2LV2LPloss Ploss =2RRR=ρ/πr2 and R=ρ/πr2Ploss Ploss =2r2r2
system. system use 33% more material than If the same power loss is tolerated in both systems, then

Problem

Determine the total average power, reactive power, and complex power at the source and at the load.
image
Vp=1100VIp=6.8121.8ASs=3VpIp=3(1100)(6.8121.8)=224721.8=(2087+j834.6)VASL=3|Ip|2Zp