Step Response of RL Circuits

Demonstrative Video


RL Circuit with Source


Step Response of an RL Circuit

image

  • Final solution

\[\begin{gathered} -\frac{L}{R}\left[\ln \left(V_{s}-R i\right)-\ln V_{s}\right]=t \\ \frac{V_{s}-R i}{V_{s}}=e^{-R t / L} \\ i=\frac{V_{s}}{R}-\frac{V_{s}}{R} e^{-R t / L} \quad t>0 \\ \boxed{i=\frac{V_{s}}{R}\left(1- e^{- t / \tau}\right) u(t)}\\ \boxed{\tau=\dfrac{L}{R}} \end{gathered}\] image \[i=I_0+\frac{V_{s}}{R}\left(1- e^{- t / \tau}\right)\]

Solution for voltage

\[\begin{aligned} i(t) & =\frac{V_{s}}{R}\left(1-e^{-t / \tau}\right) u(t) \\ v(t) & =L \frac{d i}{d t}=V_{s} \frac{L}{\tau R} e^{-t / \tau}, \quad \tau=\frac{L}{R}, \quad t>0 \\ & \boxed{v(t) =V_{s} e^{-t / \tau} u(t) } \end{aligned}\]

image


Problem Solving Steps


Solved Problem

Find \(i(t)\) for \(t>0\) assuming the switch has been closed for a long time.

  • \(i(0)=i(0^-)=i(0^+)=\dfrac{10}{2}=5~\mathrm{A}\)

  • \(i(\infty) = \dfrac{10}{2+3}=2~\mathrm{A}\)

image



Revision of Formulas

RC-Circuits

  • Natural Response \[\begin{aligned} &v(t)=V_{0} e^{-t / \tau} \\ &i_{R}(t)=\frac{v(t)}{R}=\frac{V_{0}}{R} e^{-t / \tau} \end{aligned}\]

  • Forced Response \[\begin{aligned} &v(t)=V_{s}\left(1-e^{-t / \tau}\right) u(t) \\ &i(t)=\frac{V_{s}}{R} e^{-t / \tau} u(t) \end{aligned}\]

\[\boxed{\tau = RC}\]

RL-Circuits

  • Natural Response \[\begin{aligned} &i(t)=I_{0} e^{-t / \tau} \\ &v_{R}(t)=i R=I_{0} R e^{-t / \tau} \end{aligned}\]

  • Forced Response \[\begin{aligned} &i(t)=\frac{V_{s}}{R}\left(1-e^{-t / \tau}\right) u(t) \\ &v(t)=V_{s} e^{-t / \tau} u(t) \end{aligned}\]

\[\boxed{\tau = \dfrac{L}{R}}\]