RL Circuit Natural Response and Singularity Functions

Demonstrative Video


RL Circuit without Source


The Source-Free RL Circuit


RL Transient Analysis

\[\begin{aligned} &i(0)=I_{0} \\ &w(0)=\frac{1}{2} L I_{0}^{2} \\ &v_{L}+v_{R}=0 \\ &L \frac{d i}{d t}+R i=0 \\ &\frac{d i}{d t}+\frac{R}{L} i=0 \\ &\int_{I_{0}}^{i(t)} \frac{d i}{i}=-\int_{0}^{t} \frac{R}{L} d t \end{aligned}\] image

\[\left.\ln i\right|_{I_{0}} ^{i(t)}=-\left.\frac{R t}{L}\right|_{0} ^{t} \quad \Rightarrow \quad \ln i(t)-\ln I_{0}=-\frac{R t}{L}+0\] or \[\begin{aligned} \ln \frac{i(t)}{I_{0}}&=-\frac{R t}{L}~\Rightarrow~ \boxed{ i(t)=I_{0} e^{-R t / L}} \end{aligned}\]

image

\[\begin{gathered} v_{R}(t)=i R=I_{0} R e^{-t / \tau} \\ p=v_{R} i=I_{0}^{2} R e^{-2 t / \tau} \\ w_{R}(t)=\int_{0}^{t} p d t=\int_{0}^{t} I_{0}^{2} R e^{-2 t / \tau} d t=-\left.\frac{1}{2} \tau I_{0}^{2} R e^{-2 t / \tau}\right|_{0} ^{t} \\ w_{R}(t)=\frac{1}{2} L I_{0}^{2}\left(1-e^{-2 t / \tau}\right) \end{gathered}\]

Problem solving steps

Problem solving steps


Solved Problem

Assuming \(i(0)=10\) A, calculate \(i(t)\) and \(i_x(t)\) image

\[\begin{aligned} &2\left(i_{1}-i_{2}\right)+1=0 \quad \Rightarrow i_{1}-i_{2}=-\frac{1}{2} \\ &6 i_{2}-2 i_{1}-3 i_{1}=0 \quad \Rightarrow \quad i_{2}=\frac{5}{6} i_{1} \\ &i_{1}=-3 \mathrm{~A}, \quad i_{o}=-i_{1}=3 \mathrm{~A} \end{aligned}\] image

\[\begin{aligned} &R_{\mathrm{eq}}=R_{\mathrm{Th}}=\frac{v_{o}}{i_{o}}=\frac{1}{3} \Omega \\ &\tau=\frac{L}{R_{\mathrm{eq}}}=\frac{\frac{1}{2}}{\frac{1}{3}}=\frac{3}{2} \mathrm{~s} \\ &i(t)=i(0) e^{-t / \tau}=10 e^{-(2 / 3) t} \mathrm{~A} \end{aligned}\] \[\begin{aligned} v&=L \frac{d i}{d t}=0.5(10)\left(-\frac{2}{3}\right) e^{-(2 / 3) t}\\ &=-\frac{10}{3} e^{-(2 / 3) t} \mathrm{~V} \\ i_{x}(t)&=\frac{v}{2}=-1.6667 e^{-(2 / 3) t} \mathrm{~A} \end{aligned}\]



Singularity Functions


Unit Step-function

image \[\begin{gathered} u(t)= \begin{cases}0, & t<0 \\ 1, & t>0\end{cases} \\ u\left(t-t_{0}\right)= \begin{cases}0, & t<t_{0} \\ 1, & t>t_{0}\end{cases} \\ u\left(t+t_{0}\right)= \begin{cases}0, & t<-t_{0} \\ 1, & t>-t_{0}\end{cases} \end{gathered}\]

image


Unit Impulse function

\[\delta(t)=\frac{d}{d t} u(t)= \begin{cases}0, & t<0 \\ \text { Undefined, } & t=0 \\ 0, & t>0\end{cases}\] image


Unit-Ramp Function

image

\[\begin{aligned} &r(t)=\int_{-\infty}^{t} u(t) d t=t u(t) \\ &r(t)= \begin{cases}0, & t \leq 0 \\ t, & t \geq 0\end{cases} \\ &r\left(t-t_{0}\right)= \begin{cases}0, & t \leq t_{0} \\ t-t_{0}, & t \geq t_{0}\end{cases} \\ &r\left(t+t_{0}\right)= \begin{cases}0, & t \leq-t_{0} \\ t+t_{0}, & t \geq-t_{0}\end{cases} \end{aligned}\]


REMEMBER:

\[\begin{gathered} \delta(t)=\frac{d u(t)}{d t}, \quad u(t)=\frac{d r(t)}{d t} \\ u(t)=\int_{-\infty}^{t} \delta(t) d t, \quad r(t)=\int_{-\infty}^{t} u(t) d t \end{gathered}\]